

Release Team[oR] 2001

[x] Database

Sams Teach Yourself SQL in 24 Hours 2nd Edition

Author: Ryan Stephens

US Publisher: Sams

ISBN: 0672318997

Hour 1

CONNECT user@database

DISCONNECT

Hour 2

CREATE TYPE PERSON AS OBJECT

(NAME VARCHAR2(30),

SSN VARCHAR2(9));

CREATE TABLE EMP_PAY

(EMPLOYEE PERSON,

SALARY NUMBER(10,2),

HIRE_DATE DATE);

CREATE DOMAIN MONEY_D AS NUMBER(8,2);

ALTER DOMAIN MONEY_D

ADD CONSTRAINT MONEY_CON1

CHECK (VALUE > 5);

CREATE TABLE EMP_PAY

(EMP_ID NUMBER(9),

EMP_NAME VARCHAR2(30),

PAY_RATE MONEY_D);

Hour 3

CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR(9) NOT NULL,

EMP_NAME VARCHAR2(40) NOT NULL,

EMP_ST_ADDR VARCHAR2(20) NOT NULL,

EMP_CITY VARCHAR2(15) NOT NULL,

EMP_ST CHAR(2) NOT NULL,

EMP_ZIP NUMBER(5) NOT NULL,

EMP_PHONE NUMBER(10) NULL,

EMP_PAGER NUMBER(10) NULL);

CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR(9) NOT NULL,

EMP_NAME VARCHAR(40) NOT NULL,

EMP_ST_ADDR VARCHAR(20) NOT NULL,

EMP_CITY VARCHAR(15) NOT NULL,

EMP_ST CHAR(2) NOT NULL,

EMP_ZIP NUMBER(5) NOT NULL,

EMP_PHONE NUMBER(10) NULL,

EMP_PAGER NUMBER(10) NULL)

STORAGE

(INITIAL 3K

NEXT 2K);

ALTER TABLE EMPLOYEE_TBL MODIFY (EMP_ID VARCHAR2(10));

select * from products_tbl;

create table products_tmp as

select * from products_tbl;

select *

from products_tmp;

drop table products_USER1.tmp;

CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR(9) NOT NULL PRIMARY KEY,

EMP_NAME VARCHAR2(40) NOT NULL,

EMP_ST_ADDR VARCHAR2(20) NOT NULL,

EMP_CITY VARCHAR2(15) NOT NULL,

EMP_ST CHAR(2) NOT NULL,

EMP_ZIP NUMBER(5) NOT NULL,

EMP_PHONE NUMBER(10) NULL,

EMP_PAGER NUMBER(10) NULL);

CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR(9) NOT NULL,

EMP_NAME VARCHAR2(40) NOT NULL,

EMP_ST_ADDR VARCHAR2(20) NOT NULL,

EMP_CITY VARCHAR2(15) NOT NULL,

EMP_ST CHAR(2) NOT NULL,

EMP_ZIP NUMBER(5) NOT NULL,

EMP_PHONE NUMBER(10) NULL,

EMP_PAGER NUMBER(10) NULL,

PRIMARY KEY (EMP_ID));

CREATE TABLE PRODUCTS

(PROD_ID VARCHAR2(10) NOT NULL,

VEND_ID VARCHAR2(10) NOT NULL,

PRODUCT VARCHAR2(30) NOT NULL,

COST NUMBER(8,2) NOT NULL,

PRIMARY KEY (PROD_ID, VEND_ID));

ALTER TABLE PRODUCTS

ADD CONSTRAINT PRODUCTS_PK PRIMARY KEY (PROD_ID, VEND_ID);

CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR(9) NOT NULL PRIMARY KEY,

EMP_NAME VARCHAR2(40) NOT NULL,

EMP_ST_ADDR VARCHAR2(20) NOT NULL,

EMP_CITY VARCHAR2(15) NOT NULL,

EMP_ST CHAR(2) NOT NULL,

EMP_ZIP NUMBER(5) NOT NULL,

EMP_PHONE NUMBER(10) NULL UNIQUE,

EMP_PAGER NUMBER(10) NULL);

CREATE TABLE EMPLOYEE_PAY_TBL

(EMP_ID CHAR(9) NOT NULL,

POSITION VARCHAR2(15) NOT NULL,

DATE_HIRE DATE NULL,

PAY_RATE NUMBER(4,2) NOT NULL,

DATE_LAST_RAISE DATE NULL,

CONSTRAINT EMP_ID_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL (EMP_ID));

alter table employee_pay_tbl

add constraint id_fk foreign key (emp_id)

references employee_tbl (emp_id);

CREATE TABLE EMPLOYEE_TBL

(EMP_ID CHAR(9) NOT NULL,

EMP_NAME VARCHAR2(40) NOT NULL,

EMP_ST_ADDR VARCHAR2(20) NOT NULL,

EMP_CITY VARCHAR2(15) NOT NULL,

EMP_ST CHAR(2) NOT NULL,

EMP_ZIP NUMBER(5) NOT NULL,

EMP_PHONE NUMBER(10) NULL,

EMP_PAGER NUMBER(10) NULL),

PRIMARY KEY (EMP_ID),

CONSTRAINT CHK_EMP_ZIP CHECK (EMP_ZIP = '46234');

CREATE TABLE EMPLOYEE_PAY_TBL

(EMP_ID CHAR(9) NOT NULL,

POSITION VARCHAR2(15) NOT NULL,

DATE_HIRE DATE NULL,

PAY_RATE NUMBER(4,2) NOT NULL,

DATE_LAST_RAISE DATE NULL,

CONSTRAINT EMP_ID_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL (EMP_ID),

CONSTRAINT CHK_PAY CHECK (PAY_RATE > 12.50));

alter table employees drop constraint employees_pk;

alter table employees drop primary key;

Hour 4

Hour 5

insert into products_tbl

values ('7725','LEATHER GLOVES',24.99);

INSERT INTO EMPLOYEE_TBL

(EMP_ID, LAST_NAME, FIRST_NAME, MIDDLE_NAME, ADDRESS, CITY, STATE, ZIP, PHONE)

VALUES

('123456789', 'SMITH', 'JOHN', 'JAY', '12 BEACON CT',

'INDIANAPOLIS', 'IN', '46222', '3172996868');

insert into orders_tbl (ord_num,cust_id,prod_id,qty)

values ('23A16','109','7725',2);

select * from products_tbl;

insert into products_tmp

select * from products_tbl;

select * from products_tmp;

insert into orders_tbl (ord_num,cust_id,prod_id,qty,ORD_DATE)

values ('23A16','109','7725',2,NULL);

insert into orders_tbl

values ('23A16','109','7725',2, '');

update orders_tbl

set qty = 1

where ord_num = '23A16';

update orders_tbl

set qty = 1;

update orders_tbl

set qty = 1,

cust_id = '221'

where ord_num = '23A16';

delete from orders_tbl

where ord_num = '23A16';

delete from orders_tbl;

Hour 6

select * from products_tmp;

delete from products_tmp

where cost < 14;

commit;

select * from products_tmp;

update products_tmp

set cost = 39.99

where prod_id = '11235';

select * from products_tmp;

rollback;

select * from products_tmp;

savepoint sp1;

delete from products_tmp where prod_id = '11235';

savepoint sp2;

delete from products_tmp where prod_id = '90';

savepoint sp3;

delete from products_tmp where prod_id = '2345';

rollback to sp2;

select * from products_tmp;

rollback;

select * from products_tmp;

Hour 7

SELECT * FROM PRODUCTS_TBL;

SELECT PROD_DESC FROM CANDY_TBL;

SELECT ALL PROD_DESC

FROM CANDY_TBL;

SELECT DISTINCT PROD_DESC

FROM CANDY_TBL;

SELECT DISTINCT(PROD_DESC)

FROM CANDY_TBL;

SELECT *

FROM PRODUCTS_TBL;

SELECT * FROM PRODUCTS_TBL

WHERE COST < 5;

SELECT PROD_DESC, COST

FROM PRODUCTS_TBL

WHERE PROD_ID = '119';

SELECT PROD_DESC, PROD_ID, COST

FROM PRODUCTS_TBL

WHERE COST < 20

ORDER BY PROD_DESC ASC;

SELECT PROD_DESC, PROD_ID, COST

FROM PRODUCTS_TBL

WHERE COST < 20

ORDER BY PROD_DESC DESC;

SELECT PROD_DESC, PROD_ID, COST

FROM PRODUCTS_TBL

WHERE COST < 20

ORDER BY 1;

SELECT *

FROM EMPLOYEE_TBL

WHERE LAST_NAME = 'SMITH';

SELECT * FROM EMPLOYEE_TBL;

SELECT EMP_ID

FROM EMPLOYEE_TBL;

SELECT EMP_ID FROM EMPLOYEE_TBL;

SELECT EMP_ID, LAST_NAME

FROM EMPLOYEE_TBL;

SELECT EMP_ID, LAST_NAME

FROM EMPLOYEE+TBL

WHERE EMP_ID = '333333333';

SELECT EMP_ID, LAST_NAME

FROM EMPLOYEE_TBL

WHERE CITY = 'INDIANAPOLIS'

ORDER BY EMP_ID;

SELECT EMP_ID, LAST_NAME

FROM EMPLOYEE_TBL

WHERE CITY = 'INDIANAPOLIS'

ORDER BY EMP_ID, LAST_NAME DESC;

SELECT EMP_ID, LAST_NAME

FROM EMPLOYEE_TBL

WHERE CITY = 'INDIANAPOLIS'

ORDER BY 1;

SELECT EMP_ID, LAST_NAME

FROM EMPLOYEE_TBL

WHERE CITY = 'INDIANAPOLIS'

ORDER BY 2, 1;

SELECT COUNT(*)

FROM TABLE_NAME;

SELECT COUNT(*) FROM PRODUCTS_TBL;

SELECT COUNT(PROD_ID) FROM PRODUCTS_TBL;

SELECT EMP_ID

FROM SCHEMA.EMPLOYEE_TBL;

select prod_desc,

prod_desc product

from products_tbl;

Hour 8

SELECT *

FROM PRODUCTS_TBL

WHERE PROD_ID = '2345';

SELECT *

FROM PRODUCTS_TBL

WHERE PROD_ID <> '2345';

SELECT *

FROM PRODUCTS_TBL

WHERE COST > 20;

SELECT *

FROM PRODUCTS_TBL

WHERE COST < 24.99;

SELECT *

FROM PRODUCTS_TBL

WHERE COST <= 24.99;

SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER

FROM EMPLOYEE_TBL

WHERE PAGER IS NULL;

SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER

FROM EMPLOYEE_TBL

WHERE PAGER = NULL;

SELECT *

FROM PRODUCTS_TBL

WHERE COST BETWEEN 5.95 AND 14.5;

SELECT *

FROM PRODUCTS_TBL

WHERE PROD_ID IN ('13','9','87','119');

SELECT PROD_DESC

FROM PRODUCTS_TBL

WHERE PROD_DESC LIKE '%S';

SELECT PROD_DESC

FROM PRODUCTS_TBL

WHERE PROD_DESC LIKE '_S%';

SELECT COST

FROM PRODUCTS_TBL

WHERE EXISTS (SELECT COST

FROM PRODUCTS_TBL

WHERE COST > 100);

SELECT COST

FROM PRODUCTS_TBL

WHERE EXISTS (SELECT COST

FROM PRODUCTS_TBL

WHERE COST < 100);

SELECT *

FROM PRODUCTS_TBL

WHERE COST > ALL (SELECT COST

FROM PRODUCTS_TBL

WHERE COST < 10);

SELECT *

FROM PRODUCTS_TBL

WHERE COST > ANY (SELECT COST

FROM PRODUCTS_TBL

WHERE COST < 10);

SELECT *

FROM PRODUCTS_TBL

WHERE COST > 10

AND COST < 30;

SELECT *

FROM PRODUCTS_TBL

WHERE PROD_ID = '7725'

AND PROD_ID = '2345';

SELECT *

FROM PRODUCTS_TBL

WHERE PROD_ID = '7725'

OR PROD_ID = '2345'

SELECT *

FROM PRODUCTS_TBL

WHERE COST > 10

AND (PROD_ID = '222'

OR PROD_ID = '90'

OR PROD_ID = '11235');

SELECT *

FROM PRODUCTS_TBL

WHERE COST NOT BETWEEN 5.95 AND 14.5;

SELECT *

FROM PRODUCTS_TBL

WHERE PROD_ID NOT IN ('13','9','87','119');

SELECT PROD_DESC

FROM PRODUCTS_TBL

WHERE PROD_DESC NOT LIKE 'L%';

SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER

FROM EMPLOYEE_TBL

WHERE PAGER IS NOT NULL;

SELECT MAX(COST)

FROM PRODUCTS_TBL

WHERE NOT EXISTS (SELECT COST

FROM PRODUCTS_TBL

WHERE COST > 100);

SELECT SALARY + BONUS

FROM EMPLOYEE_PAY_TBL;

SELECT SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY + BONUS

 		'40000';

SELECT SALARY - BONUS

FROM EMPLOYEE_PAY_TBL;

SELECT SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY -

BONUS > '40000';

SELECT SALARY * 10

FROM EMPLOYEE_PAY_TBL;

SELECT SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY * 10

 		'40000';

SELECT EMP_ID, PAY_RATE, PAY_RATE * 1.1

FROM EMPLOYEE_PAY_TBL

WHERE PAY_RATE IS NOT NULL;

SELECT SALARY / 10

FROM EMPLOYEE_PAY_TBL;

SELECT SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY / 10

 		'40000';

SELECT SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY / 10

 		'40000'

SELECT SALARY * 10 + 1000

FROM EMPLOYEE_PAY_TBL

WHERE SALARY > 20000;

SELECT SALARY / 52 + BONUS

FROM EMPLOYEE_PAY_TBL;

SELECT (SALARY - 1000 + BONUS) / 52 * 1.1

FROM EMPLOYEE_PAY_TBL;

SELECT SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY < BONUS * 3 + 10 / 2 - 50;

Hour 9

SELECT *

FROM PRODUCTS_TBL;

SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER

FROM EMPLOYEE_TBL;

SELECT COUNT(EMPLOYEE_ID)

FROM EMPLOYEE_PAY_ID;

SELECT COUNT(DISTINCT SALARY)

FROM EMPLOYEE_PAY_TBL;

SELECT COUNT(ALL SALARY)

FROM EMPLOYEE_PAY_TBL;

SELECT COUNT(*)

FROM EMPLOYEE_TBL;

SELECT COUNT(*)

FROM EMPLOYEE_TBL;

SELECT COUNT(EMP_ID)

FROM EMPLOYEE_TBL;

SELECT COUNT(PAGER)

FROM EMPLOYEE_TBL;

SELECT *

FROM ORDERS_TBL;

SELECT COUNT(DISTINCT(PROD_ID))

FROM ORDERS_TBL;

SELECT SUM(SALARY)

FROM EMPLOYEE_PAY_TBL;

SELECT SUM(DISTINCT SALARY)

FROM EMPLOYEE_PAY_TBL;

SELECT SUM(COST)

FROM PRODUCTS_TBL;

SELECT AVG(SALARY)

FROM EMPLOYEE_PAY_TBL;

SELECT AVG(DISTINCT SALARY)

FROM EMPLOYEE_PAY_TBL;

SELECT AVG(COST)

FROM PRODUCTS_TBL;

SELECT AVG(PAY_RATE), AVG(SALARY)

FROM EMPLOYEE_PAY_TBL;

SELECT MAX(SALARY)

FROM EMPLOYEE_PAY_TBL;

SELECT MAX(DISTINCT SALARY)

FROM EMPLOYEE_PAY_TBL;

SELECT MAX(COST)

FROM PRODUCTS_TBL;

SELECT MIN(SALARY)

FROM EMPLOYEE_PAY_TBL;

SELECT MIN(DISTINCT SALARY)

FROM EMPLOYEE_PAY_TBL;

SELECT MIN(COST)

FROM PRODUCTS_TBL;

SELECT COUNT(ORD_NUM), SUM(QTY),

SUM(QTY) / COUNT(ORD_NUM) AVG_QTY

FROM ORDERS_TBL;

Hour 10

 SELECT EMP_ID, CITY

 FROM EMPLOYEE_TBL

 GROUP BY CITY, EMP_ID;

 SELECT EMP_ID, SUM(SALARY)

 FROM EMPLOYEE_PAY_TBL

 GROUP BY SALARY, EMP_ID;

 SELECT SUM(SALARY)

 FROM EMPLOYEE_PAY_TBL;

 SELECT SUM(SALARY)

 FROM EMPLOYEE_PAY_TBL

 GROUP BY SALARY;

SELECT CITY

FROM EMPLOYEE_TBL;

SELECT CITY, COUNT(*)

FROM EMPLOYEE_TBL

GROUP BY CITY;

SELECT *

FROM EMP_PAY_TMP;

SELECT CITY, AVG(PAY_RATE), AVG(SALARY)

FROM EMP_PAY_TMP

GROUP BY CITY;

SELECT CITY, AVG(PAY_RATE), AVG(SALARY)

FROM EMP_PAY_TMP

WHERE CITY IN ('INDIANAPOLIS','WHITELAND')

GROUP BY CITY

ORDER BY 2,3;

SELECT CITY, MAX(PAY_RATE), MIN(SALARY)

FROM EMP_PAY_TMP

GROUP BY CITY;

SELECT EMP_ID, SUM(SALARY)

FROM EMPLOYEE_PAY_TBL

UNION

SELECT EMP_ID, SUM(PAY_RATE)

FROM EMPLOYEE_PAY_TBL

GROUP BY 2, 1;

SELECT LAST_NAME, FIRST_NAME, CITY

FROM EMPLOYEE_TBL

GROUP BY LAST_NAME;

SELECT LAST_NAME, FIRST_NAME, CITY

FROM EMPLOYEE_TBL

GROUP BY LAST_NAME, FIRST_NAME, CITY;

SELECT CITY, LAST_NAME

FROM EMPLOYEE_TBL

GROUP BY CITY, LAST_NAME;

SELECT CITY, COUNT(*)

FROM EMPLOYEE_TBL

GROUP BY CITY

ORDER BY 2,1;

SELECT CITY, AVG(PAY_RATE), AVG(SALARY)

FROM EMP_PAY_TMP

WHERE CITY <> 'GREENWOOD'

GROUP BY CITY

HAVING AVG(SALARY) > 20000

ORDER BY 3;

Hour 11

SELECT CITY + STATE

FROM EMPLOYEE_TBL;

SELECT CITY ||',

'|| STATE FROM

EMPLOYEE_TBL;

SELECT CITY + '

' + STATE

FROM EMPLOYEE_TBL;

SELECT LAST_NAME || ', ' || FIRST_NAME NAME

FROM EMPLOYEE_TBL;

SELECT TRANSLATE

(CITY,'IND','ABC'

FROM EMPLOYEE_TBL);

SELECT CITY, TRANSLATE(CITY,'IND','ABC')

FROM EMPLOYEE_TBL;

SELECT REPLACE(FIRST_ NAME, 'T', 'B')

FROM EMPLOYEE_TBL;

SELECT CITY, REPLACE(CITY,'I','Z')

FROM EMPLOYEE_TBL;

SELECT UPPER(LAST_NAME)

FROM EMPLOYEE_TBL;

SELECT UPPER(CITY)

FROM EMPLOYEE_TBL;

SELECT LOWER(LAST_NAME)

FROM EMPLOYEE_TBL;

SELECT LOWER(CITY)

FROM EMPLOYEE_TBL;

SELECT SUBSTRING(EMP_ID,1,3)

FROM EMPLOYEE_TBL;

SELECT SUBSTRING(EMP_ID,4,2)

FROM EMPLOYEE_TBL;

SELECT SUBSTRING(EMP_ID,6,4)

FROM EMPLOYEE_TBL;

SELECT EMP_ID, SUBSTRING(EMP_ID,1,3)

FROM EMPLOYEE_TBL;

SELECT EMP_ID, SUBSTR(EMP_ID,1,3)

FROM EMPLOYEE_TBL;

SELECT INSTR(STATE,'I',1,1)

FROM EMPLOYEE_TBL;

SELECT PROD_DESC,

INSTR(PROD_DESC,'A',1,1)

FROM PRODUCTS_TBL;

SELECT LTRIM(FIRST_ NAME,'LES')

FROM CUSTOMER_TBL

WHERE FIRST_NAME = 'LESLIE';

SELECT POSITION, LTRIM(POSITION,'SALES')

FROM EMPLOYEE_PAY_TBL;

SELECT RTRIM(FIRST_ NAME, 'ON')

FROM EMPLOYEE_TBL

WHERE FIRST_NAME = 'BRANDON';

SELECT POSITION, RTRIM(POSITION,'ER')

FROM EMPLOYEE_PAY_TBL;

SELECT DECODE(LAST_NAME, 'SMITH', 'JONES', 'OTHER')

FROM EMPLOYEE_TBL;

SELECT CITY,

DECODE(CITY,'INDIANAPOLIS','INDY',

'GREENWOOD','GREEN', 'OTHER')

FROM EMPLOYEE_TBL;

SELECT LENGTH(LAST_NAME)

FROM EMPLOYEE_TBL;

SELECT PROD_DESC, LENGTH(PROD_DESC)

FROM PRODUCTS_TBL;

SELECT NVL(SALARY, '00000')

FROM EMPLOYEE_PAY_TBL;

SELECT PAGER, NVL(PAGER,9999999999)

FROM EMPLOYEE_TBL;

SELECT LPAD(PROD_DESC,30,'.') PRODUCT

FROM PRODUCTS_TBL;

SELECT RPAD(PROD_DESC,30,'.') PRODUCT

FROM PRODUCTS_TBL;

SELECT LAST_NAME

FROM EMPLOYEE_TBL

WHERE SOUNDEX(LAST_NAME) = SOUNDEX('STEVENS');

SELECT EMP_ID, TO_NUMBER(EMP_ID)

FROM EMPLOYEE_TBL;

SELECT PAY = PAY_RATE, NEW_PAY = STR(PAY_RATE)

FROM EMPLOYEE_PAY_TBL

WHERE PAY_RATE IS NOT NULL;

SELECT PAY_RATE, TO_CHAR(PAY_RATE)

FROM EMPLOYEE_PAY_TBL

WHERE PAY_RATE IS NOT NULL;

SELECT LAST_NAME || ', ' || FIRST_NAME NAME,

SUBSTR(EMP_ID,1,3) || '-' ||

SUBSTR(EMP_ID,4,2) || '-' ||

SUBSTR(EMP_ID,6,4) ID

FROM EMPLOYEE_TBL;

SELECT SUM(LENGTH(LAST_NAME) + LENGTH(FIRST_NAME)) TOTAL

FROM EMPLOYEE_TBL;

Hour 12

SELECT GETDATE()

DATE '1999-12-31' + INTERVAL '1' DAY

DATE '1999-12-31' + INTERVAL '1' MONTH

SELECT DATEADD(MONTH, 1, DATE_HIRE)

FROM EMPLOYEE_PAY_TBL

SELECT DATE_HIRE, ADD_MONTHS(DATE_HIRE,1)

FROM EMPLOYEE_PAY_TBL;

SELECT DATE_HIRE, DATE_HIRE + 1

FROM EMPLOYEE_PAY_TBL

WHERE EMP_ID = '311549902';

SELECT DATE_HIRE = DATENAME(MONTH, DATE_HIRE)

FROM EMPLOYEE_PAY_TBL

SELECT DATE_HIRE, TO_CHAR(DATE_HIRE,'Month dd, yyyy') HIRE

FROM EMPLOYEE_PAY_TBL;

SELECT TO_DATE('JANUARY 01 1998','MONTH DD YYYY')

FROM EMPLOYEE_PAY_TBL;

Hour 13

SELECT EMPLOYEE_TBL.EMP_ID,

EMPLOYEE_PAY_TBL.DATE_HIRE

FROM EMPLOYEE_TBL,

EMPLOYEE_PAY_TBL

WHERE EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;

SELECT EMPLOYEE_TBL.EMP_ID, EMPLOYEE_TBL.LAST_NAME,

EMPLOYEE_PAY_TBL.POSITION

FROM EMPLOYEE_TBL, EMPLOYEE_PAY_TBL

WHERE EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;

SELECT EMPLOYEE_TBL.*, EMPLOYEE_PAY_TBL.SALARY

FROM EMPLOYEE_TBL,

EMPLOYEE_PAY_TBL

WHERE EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;

SELECT EMPLOYEE_TBL.*, EMPLOYEE_PAY_TBL.POSITION

FROM EMPLOYEE_TBL, EMPLOYEE_PAY_TBL

WHERE EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;

SELECT E.EMP_ID, EP.SALARY, EP.DATE_HIRE, E.LAST_NAME

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL EP

WHERE E.EMP_ID = EP.EMP_ID

AND EP.SALARY > 20000;

SELECT EMPLOYEE_TBL.EMP_ID, EMPLOYEE_PAY_TBL.DATE_HIRE

FROM EMPLOYEE_TBL,

EMPLOYEE_PAY_TBL

WHERE EMPLOYEE_TBL.EMP_ID != EMPLOYEE_PAY_TBL.EMP_ID;

SELECT E.EMP_ID, E.LAST_NAME, P.POSITION

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL P

WHERE E.EMP_ID <> P.EMP_ID;

SELECT P.PROD_DESC, O.QTY

FROM PRODUCTS_TBL P,

ORDERS_TBL O

WHERE P.PROD_ID = O.PROD_ID;

SELECT P.PROD_DESC, O.QTY

FROM PRODUCTS_TBL P,

ORDERS_TBL O

WHERE P.PROD_ID = O.PROD_ID(+);

SELECT A.LAST_NAME, B.LAST_NAME, A.FIRST_NAME

FROM EMPLOYEE_TBL A,

EMPLOYEE_TBL B

WHERE A.LAST_NAME = B.LAST_NAME;

desc prod

desc ord

desc products_tbl;

SELECT P.PRODUCT_NAME, O.ORD_DATE, O.QUANTITY

FROM PROD P, ORD O

WHERE P.SERIAL_NUMBER = O.SERIAL_NUMBER

AND P.VENDOR_NUMBER = O.VENDOR_NUMBER;

SELECT C.CUST_NAME, P.PROD_DESC

FROM CUSTOMER_TBL C,

PRODUCTS_TBL P,

ORDERS_TBL O

WHERE C.CUST_ID = O.CUST_ID

AND P.PROD_ID = O.PROD_ID;

SELECT E.EMP_ID, E.LAST_NAME, P.POSITION

FROM EMPLOYEE_TBL E,

EMPLOYEE_PAY_TBL P;

SELECT X FROM TABLE1;

SELECT V FROM TABLE2;

SELECT TABLE1.X, TABLE2.X

FROM TABLE1, TABLE2;

Hour 14

SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.PAY_RATE

FROM EMPLOYEE_TBL E, EMPLOYEE_PAY_TBL EP

WHERE E.EMP_ID = EP.EMP_ID

AND EP.PAY_RATE > (SELECT PAY_RATE

FROM EMPLOYEE_PAY_TBL

WHERE EMP_ID = '313782439');

SELECT PAY_RATE

FROM EMPLOYEE_PAY_TBL

WHERE EMP_ID = '220984332';

SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.PAY_RATE

FROM EMPLOYEE_TBL E, EMPLOYEE_PAY_TBL EP

WHERE E.EMP_ID = EP.EMP_ID

AND EP.PAY_RATE > (SELECT PAY_RATE

FROM EMPLOYEE_PAY_TBL

WHERE EMP_ID = '220984332');

INSERT INTO RICH_EMPLOYEES

SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.PAY_RATE

FROM EMPLOYEE_TBL E, EMPLOYEE_PAY_TBL EP

WHERE E.EMP_ID = EP.EMP_ID

AND EP.PAY_RATE > (SELECT PAY_RATE

FROM EMPLOYEE_PAY_TBL

WHERE EMP_ID = '220984332');

SELECT EMP_ID

FROM EMPLOYEE_TBL

WHERE CITY = 'INDIANAPOLIS';

UPDATE EMPLOYEE_PAY_TBL

SET PAY_RATE = PAY_RATE * 1.1

WHERE EMP_ID IN (SELECT EMP_ID

FROM EMPLOYEE_TBL

WHERE CITY = 'INDIANAPOLIS');

DELETE FROM EMPLOYEE_PAY_TBL

WHERE EMP_ID = (SELECT EMP_ID

FROM EMPLOYEE_TBL

WHERE LAST_NAME = 'GLASS'

AND FIRST_NAME = 'BRANDON');

SELECT CUST_ID, CUST_NAME

FROM CUSTOMER_TBL

WHERE CUST_ID IN (SELECT O.CUST_ID)

FROM, ORDERS_TBL O, PRODUCTS_TBL P

WHERE O PROD_ID = P.PROD_ID

AND O.QTY + P.COST < (SELECT SUM(COST)

FROM PRODUCTS_TBL));

SELECT SUM(COST) FROM PRODUCTS_TBL;

SELECT O.CUST_ID

FROM ORDERS_TBL O, PRODUCTS_TBL P

WHERE O.PROD_ID = P.PROD_ID

AND O.QTY * P.COST > 72.14;

SELECT CUST_ID, CUST_NAME

FROM CUSTOMER_TBL

WHERE CUST_ID IN (SELECT O.CUST_ID

FROM ORDERS_TBL O, PRODUCTS_TBL P

WHERE O.PROD_ID = P.PROD_ID

AND O.QTY * P.COST > 72.14);

SELECT CUST_ID, CUST_NAME

FROM CUSTOMER_TBL

WHERE CUST_ID IN ('287','43');

SELECT C.CUST_NAME

FROM CUSTOMER_TBL C

WHERE 10 < (SELECT SUM(O.QTY)

FROM ORDERS_TBL O

WHERE O.CUST_ID = C.CUST_ID);

SELECT C.CUST_NAME, SUM(O.QTY)

FROM CUSTOMER_TBL C,

ORDERS_TBL O

WHERE C.CUST_ID = O.CUST_ID

GROUP BY C.CUST_NAME;

Hour 15

SELECT EMP_ID, SALARY, PAY_RATE

FROM EMPLOYEE_PAY_TBL

WHERE SALARY IS NOT NULL OR

PAY_RATE IS NOT NULL;

SELECT EMP_ID, SALARY

FROM EMPLOYEE_PAY_TBL

WHERE SALARY IS NOT NULL

UNION

SELECT EMP_ID, PAY_RATE

FROM EMPLOYEE_PAY_TBL

WHERE PAY_RATE IS NOT NULL;

SELECT EMP_ID FROM EMPLOYEE_TBL

UNION

SELECT EMP_ID FROM EMPLOYEE_PAY_TBL;

SELECT PROD_DESC FROM PRODUCTS_TBL;

SELECT PROD_DESC FROM PRODUCTS_TMP;

SELECT PROD_DESC FROM PRODUCTS_TBL

UNION

SELECT PROD_DESC FROM PRODUCTS_TMP;

SELECT PROD_DESC FROM PRODUCTS_TBL

UNION

SELECT LAST_NAME FROM EMPLOYEE_TBL;

SELECT EMP_ID FROM EMPLOYEE_TBL

UNION ALL

SELECT EMP_ID FROM EMPLOYEE_PAY_TBL;

SELECT PROD_DESC FROM PRODUCTS_TBL

UNION ALL

SELECT PROD_DESC FROM PRODUCTS_TMP;

SELECT CUST_ID FROM CUSTOMER_TBL

INTERSECT

SELECT CUST_ID FROM ORDERS_TBL;

SELECT PROD_DESC FROM PRODUCTS_TBL

INTERSECT

SELECT PROD_DESC FROM PRODUCTS_TMP;

SELECT PROD_DESC FROM PRODUCTS_TBL

EXCEPT

SELECT PROD_DESC FROM PRODUCTS_TMP;

SELECT PROD_DESC FROM PRODUCTS_TBL

MINUS

SELECT PROD_DESC FROM PRODUCTS_TMP;

SELECT EMP_ID FROM EMPLOYEE_TBL

UNION

SELECT EMP_ID FROM EMPLOYEE_PAY_TBL

ORDER BY 1;

SELECT PROD_DESC FROM PRODUCTS_TBL

UNION

SELECT PROD_DESC FROM PRODUCTS_TBL

ORDER BY PROD_DESC;

SELECT PROD_DESC FROM PRODUCTS_TBL

UNION

SELECT PROD_DESC FROM PRODUCTS_TBL

ORDER BY 1;

SELECT 'CUSTOMERS' TYPE, COUNT(*)

FROM CUSTOMER_TBL

UNION

SELECT 'EMPLOYEES' TYPE, COUNT(*)

FROM EMPLOYEE_TBL

UNION

SELECT 'PRODUCTS' TYPE, COUNT(*)

FROM PRODUCTS_TBL

GROUP BY 1;

SELECT 'CUSTOMERS' TYPE, COUNT(*)

FROM CUSTOMER_TBL

UNION

SELECT 'EMPLOYEES' TYPE, COUNT(*)

FROM EMPLOYEE_TBL

UNION

SELECT 'PRODUCTS' TYPE, COUNT(*)

FROM PRODUCTS_TBL

GROUP BY TYPE

ORDER BY 2;

Hour 16

CREATE INDEX NAME_IDX

ON EMPLOYEE_TBL (LAST_NAME);

CREATE UNIQUE INDEX NAME_IDX

ON EMPLOYEE_TBL (LAST_NAME);

CREATE INDEX ORD_IDX

ON ORDERS_TBL (CUST_ID, PROD_ID);

Hour 17

SELECT CUSTOMER_TBL.CUST_ID, CUSTOMER_TBL.CUST_NAME,

CUSTOMER_TBL.CUST_PHONE, ORDERS_TBL.ORD_NUM, ORDERS_TBL.QTY

FROM CUSTOMER_TBL, ORDERS_TBL

WHERE CUSTOMER_TBL.CUST_ID = ORDERS_TBL.CUST_ID

AND ORDERS_TBL.QTY > 1 AND CUSTOMER_TBL.CUST_NAME LIKE 'G%'

ORDER BY CUSTOMER_TBL.CUST_NAME;

SELECT C.CUST_ID,

C.CUST_NAME,

C.CUST_PHONE,

O.ORD_NUM,

O.QTY

FROM ORDERS_TBL O,

CUSTOMER_TBL C

WHERE O.CUST_ID = C.CUST_ID

AND O.QTY > 1

AND C.CUST_NAME LIKE 'G%'

ORDER BY 2;

SELECT COUNT(*)

FROM TEST

WHERE LAST_NAME = 'SMITH'

AND CITY = 'INDIANAPOLIS';

SELECT COUNT(*)

FROM TEST

WHERE CITY = 'INDIANAPOLIS'

AND LAST_NAME = 'SMITH';

SELECT EMP_ID, LAST_NAME, FIRST_NAME, STATE

FROM EMPLOYEE_TBL

WHERE LAST_NAME LIKE '%E%';

SELECT EMP_ID, LAST_NAME, FIRST_NAME, STATE

FROM EMPLOYEE_TBL

WHERE LAST_NAME LIKE '%EVENS%';

SELECT EMP_ID, LAST_NAME, FIRST_NAME, STATE

FROM EMPLOYEE_TBL

WHERE LAST_NAME LIKE 'ST%';

SELECT EMP_ID, LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

WHERE CITY = 'INDIANAPOLIS'

OR CITY = 'BROWNSBURG'

OR CITY = 'GREENFIELD';

SELECT EMP_ID, LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

WHERE CITY IN ('INDIANAPOLIS', 'BROWNSBURG',

'GREENFIELD');

Hour 18

CREATE SCHEMA AUTHORIZATION USER1

CREATE TABLE EMP

(ID NUMBER NOT NULL,

NAME VARCHAR2(10) NOT NULL)

CREATE TABLE CUST

(ID NUMBER NOT NULL,

NAME VARCHAR2(10) NOT NULL)

GRANT SELECT ON TBL1 TO USER2

GRANT SELECT ON TBL2 TO USER2

/

Hour 19

GRANT SELECT ON EMPLOYEE_TBL TO USER1;

GRANT SELECT, INSERT ON EMPLOYEE_TBL TO USER1;

GRANT SELECT, INSERT ON EMPLOYEE_TBL TO USER1, USER2;

GRANT SELECT ON EMPLOYEE_TBL TO USER1 WITH GRANT OPTION;

GRANT CREATE TABLE TO USER1 WITH ADMIN OPTION;

REVOKE INSERT ON EMPLOYEE_TBL FROM USER1;

GRANT SELECT ON EMPLOYEE_TBL TO PUBLIC;

GRANT DBA TO USER1;

CREATE ROLE RECORDS_CLERK;

GRANT SELECT, INSERT, UPDATE, DELETE ON EMPLOYEE_PAY TO RECORDS_CLERK;

GRANT RECORDS_CLERK TO USER1;

DROP ROLE RECORDS_CLERK;

SET ROLE RECORDS_CLERK;

SET ROLE RECORDS_CLERK, ROLE2, ROLE3;

Hour 20

CREAT VIEW CUSTOMERS AS

SELECT *

FROM CUSTOMER_TBL;

CREATE VIEW EMP_VIEW AS

SELECT LAST_NAME, FIRST_NAME, MIDDLE_NAME

FROM EMPLOYEE_TBL;

CREATE VIEW NAMES AS

SELECT LAST_NAME || ', ' ||FIRST_NAME || ' ' || MIDDLE_NAME NAME

FROM EMPLOYEE_TBL;

SELECT *

FROM NAMES;

CREATE VIEW CITY_PAY AS

SELECT E.CITY, AVG(P PAY_RATE) AVG_PAY

FROM EMPLOYEE_TBL E,

EMPLOTEE_PAY_TBL P

WHERE E.EMP_ID = P.EMP_ID

GROUP BY E.CITY;

SELECT *

FROM CITY_PAY;

CREATE VIEW EMPLOYEE_SUMMARY AS

SELECT E.EMP_ID, E.LAST_NAME, P.POSITION, P.DATE_HIRE, P.PAY_RATE

FROM EMPLOYEE_TBL E,

EMPLOYEE PAY_TBL P

WHERE E.EMP_ID = P.EMP_ID;

CREATE VIEW2 AS

SELECT * FROM VIEW1

CREATE VIEW EMPLOYEE_PAGERS AS

SELECT LAST_NAME, FIRST_NAME, PAGER

FROM EMPLOYEE_TBL

WHERE PAGER IS NOT NULL

WITH CHECK OPTION;

INSERT INTO EMPLOYEE PAGERS

VALUES ('SMITH','JOHN',NULL);

CREATE VIEW ACTIVE_CUSTOMERS AS

SELECT C.*

FROM CUSTOMER_TBL C,

ORDERS_TBL O

WHERE C.CUST_ID = O.CUST_ID;

CREATE TABLE SUCTOMER_ROSTER_TBL AS

SELECT CUST_ID, CUST_NAME

FROM ACTIVE_CUSTOMERS;

SELECT *

FROM CUSTOMER_ROSTER_TBL;

CREATE VIEW NAMES2 AS

SELECT LAST_NAME || ', ' || FIRST_NAME || ' ' ||MIDDLE_NAME NAME

FROM EMPLOYEE_TBL

GROUP BY LAST_NAME || ', ' || FIRST_NAME || ' ' || MIDDLE_NAME;

SELECT *

FROM NAMES2;

DROP VIEW NAMES2;

CREATE SYNONYM CUST FOR CUSTOMER_TBL;

SELECT CUST_NAME

FROM CUST;

CREATE SYNONYM PRODUCTS_TBL FOR USER1.PRODUCTS_TBL;

DROP SYNONYM CUST;

Hour 21

SELECT * FROM SYSTABLES

SELECT USERNAME

FROM ALL_USERS;

SELECT TABLE_NAME

FROM USER_TABLES;

SELECT GRANTEE, PRIVILEGE

FROM SYS.DBA_SYS_PRIVS

WHERE GRANTEE = 'BRANDON';

SELECT NAME

FROM MSYSOBJECTS

WHERE NAME = 'MSYSOBJECTS'

Hour 22

DECLARE CURSOR EMP_CURSOR IS

SELECT * FROM EMPLOYEE_TBL

{ OTHER PROGRAM STATEMENTS };

OPEN EMP_CURSOR

FETCH EMP_CURSOR INTO EMP_RECORD

CREATE PROCEDURE NEW_PRODUCT

(PROD_ID IN VARCHAR2, PROD_DESC IN VARCHAR2, COST IN NUMBER)

AS

BEGIN

INSERT INTO PRODUCTS_TBL

VALUES (PROD_ID, PROD_DESC, COST);

COMMIT;

END;

EXECUTE NEW_PRODUCT ('9999','INDIAN CORN',1.99);

CREATE TRIGGER EMP_PAY_TRIG

AFTER UPDATE ON EMPLOYEE_PAY_TBL

FOR EACH ROW

BEGIN

INSERT INTO EMPLOYEE_PAY_HISTORY

(EMP_ID, PREV_PAY_RATE, PAY_RATE, DATE_LAST_RAISE,

TRANSACTION_TYPE)

VALUES

(:NEW.EMP_ID, :OLD.PAY_RATE, :NEW.PAY_RATE,

:NEW.DATE_LAST_RAISE, 'PAY CHANGE');

END;

/

SELECT 'GRANT ENABLE TO '|| USERNAME||';'

FROM SYS.DBA_USERS;

GRANT ENABLE TO RRPLEW;

GRANT ENABLE TO RKSTEP;

Hour 23

Hour 24

IF (SELECT AVG(COST) FROM PRODUCTS_TBL) > 50

BEGIN

PRINT "LOWER ALL COSTS BY 10 PERCENT."

END

ELSE

PRINT "COSTS ARE REASONABLE."

END

DECLARE

CURSOR EMP_CURSOR IS SELECT EMP_ID, LAST_NAME, FIRST_NAME, MID_INIT

FROM EMPLOYEE_TBL;

EMP_REC EMP_CURSOR%ROWTYPE;

BEGIN

OPEN EMP_CURSOR;

LOOP

FETCH EMP_CURSOR INTO EMP_REC;

EXIT WHEN EMP_CURSOR%NOTFOUND;

IF (EMP_REC.MID_INIT IS NULL) THEN

UPDATE EMPLOYEE_TBL

SET MID_INIT = 'X'

WHERE EMP_ID = EMP_REC.EMP_ID;

COMMIT;

END IF;

END LOOP;

CLOSE EMP_CURSOR;

END;

select current_date(),version();

SELECT EMP_ID, LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

WHERE EMP_ID = '&EMP_ID'

SELECT *

FROM EMPLOYEE_TBL

WHERE CITY = '&CITY'

AND STATE = '&STATE'

CREATE PROC EMP_SEARCH

(@EMP_ID)

AS

SELECT LAST_NAME, FIRST_NAME

FROM EMPLOYEE_TBL

WHERE EMP_ID = @EMP_ID

SP_EMP_SEARCH "443679012"

Appendix B

Appendix D

CREATE TABLE EMPLOYEE_TBL

(

EMP_ID VARCHAR2(9) NOT NULL,

LAST_NAME VARCHAR2(15) NOT NULL,

FIRST_NAME VARCHAR2(15) NOT NULL,

MIDDLE_NAME VARCHAR2(15),

ADDRESS VARCHAR2(30) NOT NULL,

CITY VARCHAR2(15) NOT NULL,

STATE CHAR(2) NOT NULL,

ZIP NUMBER(5) NOT NULL,

PHONE CHAR(10),

PAGER CHAR(10),

CONSTRAINT EMP_PK PRIMARY KEY (EMP_ID)

);

CREATE TABLE EMPLOYEE_PAY_TBL

(

EMP_ID VARCHAR2(9) NOT NULL primary key,

POSITION VARCHAR2(15) NOT NULL,

DATE_HIRE DATE,

PAY_RATE NUMBER(4,2),

DATE_LAST_RAISE DATE,

SALARY NUMBER(8,2),

BONUS NUMBER(6,2),

CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL (EMP_ID));

CREATE TABLE CUSTOMER_TBL

(

CUST_ID VARCHAR2(10) NOT NULL primary key,

CUST_NAME VARCHAR2(30) NOT NULL,

CUST_ADDRESS VARCHAR2(20) NOT NULL,

CUST_CITY VARCHAR2(15) NOT NULL,

CUST_STATE CHAR(2) NOT NULL,

CUST_ZIP NUMBER(5) NOT NULL,

CUST_PHONE NUMBER(10),

CUST_FAX NUMBER(10),

);

CREATE TABLE ORDERS_TBL

(

ORD_NUM VARCHAR2(10) NOT NULL primary key,

CUST_ID VARCHAR2(10) NOT NULL,

PROD_ID VARCHAR2(10) NOT NULL,

QTY NUMBER(6) NOT NULL,

ORD_DATE DATE,

);

CREATE TABLE PRODUCTS_TBL

(

PROD_ID VARCHAR2(10) NOT NULL primary key,

PROD_DESC VARCHAR2(40) NOT NULL,

COST NUMBER(6,2) NOT NULL,

);

)

Appendix E

EMPLOYEE_TBL

INSERT INTO EMPLOYEE_TBL VALUES

('311549902', 'STEPHENS', 'TINA', 'DAWN', 'RR 3 BOX 17A', 'GREENWOOD',

'IN', '47890', '3178784465', NULL);

INSERT INTO EMPLOYEE_TBL VALUES

('442346889', 'PLEW', 'LINDA', 'CAROL', '3301 BEACON', 'INDIANAPOLIS',

'IN', '46224', '3172978990', NULL);

INSERT INTO EMPLOYEE_TBL VALUES

('213764555', 'GLASS', 'BRANDON', 'SCOTT', '1710 MAIN ST', 'WHITELAND',

'IN', '47885', '3178984321', '3175709980');

INSERT INTO EMPLOYEE_TBL VALUES

('313782439', 'GLASS', 'JACOB', NULL, '3789 WHITE RIVER BLVD',

'INDIANAPOLIS', 'IN', '45734', '3175457676', '8887345678');

INSERT INTO EMPLOYEE_TBL VALUES

('220984332', 'WALLACE', 'MARIAH', NULL, '7889 KEYSTONE AVE',

'INDIANAPOLIS', 'IN', '46741', '3173325986', NULL);

INSERT INTO EMPLOYEE_TBL VALUES

('443679012', 'SPURGEON', 'TIFFANY', NULL, '5 GEORGE COURT',

'INDIANAPOLIS', 'IN', '46234', '3175679007', NULL);

EMPLOYEE_PAY_TBL

INSERT INTO EMPLOYEE_PAY_TBL VALUES

('311549902', 'MARKETING', '23-MAY-89', NULL, '01-MAY-99', '40000', NULL);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

('442346889', 'TEAM LEADER', '17-JUN-90', '14.75', '01-JUN-99', NULL, NULL);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

('213764555', 'SALES MANAGER', '14-AUG-94', NULL, '01-AUG-99', '30000', '2000');

INSERT INTO EMPLOYEE_PAY_TBL VALUES

('313782439', 'SALESMAN', '28-JUN-97', NULL, NULL, '20000', '1000');

INSERT INTO EMPLOYEE_PAY_TBL VALUES

('220984332', 'SHIPPER', '22-JUL-96', '11.00', '01-JUL-99', NULL, NULL);

INSERT INTO EMPLOYEE_PAY_TBL VALUES

('443679012', 'SHIPPER', '14-JAN-91', '15.00', '01-JAN-99', NULL, NULL);

CUSTOMER_TBL

INSERT INTO CUSTOMER_TBL VALUES

('232', 'LESLIE GLEASON', '798 HARDAWAY DR', 'INDIANAPOLIS',

'IN', '47856', '3175457690', NULL);

INSERT INTO CUSTOMER_TBL VALUES

('109', 'NANCY BUNKER', 'APT A 4556 WATERWAY', 'BROAD RIPPLE',

'IN', '47950', '3174262323', NULL);

INSERT INTO CUSTOMER_TBL VALUES

('345', 'ANGELA DOBKO', 'RR3 BOX 76', 'LEBANON', 'IN', '49967',

'7658970090', NULL);

INSERT INTO CUSTOMER_TBL VALUES

('090', 'WENDY WOLF', '3345 GATEWAY DR', 'INDIANAPOLIS', 'IN',

'46224', '3172913421', NULL);

INSERT INTO CUSTOMER_TBL VALUES

('12', 'MARYS GIFT SHOP', '435 MAIN ST', 'DANVILLE', 'IL', '47978',

'3178567221', 3178523434');

INSERT INTO CUSTOMER_TBL VALUES

('432', 'SCOTTYS MARKET', 'RR2 BOX 173', 'BROWNSBURG', 'IN',

'45687', '3178529835', '3178529836');

INSERT INTO CUSTOMER_TBL VALUES

('333', 'JASONS AND DALLAS GOODIES', 'LAFAYETTE SQ MALL',

'INDIANAPOLIS', 'IN', '46222', '3172978886', '3172978887');

INSERT INTO CUSTOMER_TBL VALUES

('21', 'MORGANS CANDIES AND TREATS', '5657 W TENTH ST',

'INDIANAPOLIS', 'IN', '46234', 3172714398', NULL);

INSERT INTO CUSTOMER_TBL VALUES

('43', 'SCHYLERS NOVELTIES', '17 MAPLE ST', 'LEBANON', 'IN',

'48990', '3174346758', NULL);

INSERT INTO CUSTOMER_TBL VALUES

('287', 'GAVINS PLACE', '9880 ROCKVILLE RD', 'INDIANAPOLIS',

'IN', '46244', '3172719991', 3172719992');

INSERT INTO CUSTOMER_TBL VALUES

('288', 'HOLLYS GAMEARAMA', '567 US 31 SOUTH', 'WHITELAND',

'IN', '49980', '3178879023', NULL);

INSERT INTO CUSTOMER_TBL VALUES

('590', 'HEATHERS FEATHERS AND THINGS', '4090 N SHADELAND AVE',

'INDIANAPOLIS', 'IN', '43278', '3175456768', NULL);

INSERT INTO CUSTOMER_TBL VALUES

('610', 'RAGANS HOBBIES INC', '451 GREEN ST', 'PLAINFIELD', 'IN',

'46818', '3178393441', 3178399090');

INSERT INTO CUSTOMER_TBL VALUES

('560', 'ANDYS CANDIES', 'RR 1 BOX 34', 'NASHVILLE', 'IN',

'48756', '8123239871', NULL);

INSERT INTO CUSTOMER_TBL VALUES

('221', 'RYANS STUFF', '2337 S SHELBY ST', 'INDIANAPOLIS', 'IN',

'47834', '3175634402', NULL);

ORDERS_TBL

INSERT INTO ORDERS_TBL VALUES

('56A901', '232', '11235', '1', '22-OCT-99');

INSERT INTO ORDERS_TBL VALUES

('56A917', '12', '907', '100', '30-SEP-99');

INSERT INTO ORDERS_TBL VALUES

('32A132', '43', '222', '25', '10-OCT-99');

INSERT INTO ORDERS_TBL VALUES

('16C17', '090', '222', '2', '17-OCT-99');

INSERT INTO ORDERS_TBL VALUES

('18D778', '287', '90', '10', '17-OCT-99');

INSERT INTO ORDERS_TBL VALUES

('23E934', '432', '13', '20', '15-OCT-99');

INSERT INTO ORDERS_TBL VALUES

('90C461', '560', '1234', 1, '17-OCT-99');(d)PRODUCTS_TBL

INSERT INTO PRODUCTS_TBL VALUES

('11235', 'WITCHES COSTUME', '29.99');

INSERT INTO PRODUCTS_TBL VALUES

('222', 'PLASTIC PUMPKIN 18 INCH', '7.75');

INSERT INTO PRODUCTS_TBL VALUES

('13', 'FALSE PARAFFIN TEETH', '1.10');

INSERT INTO PRODUCTS_TBL VALUES

('90', 'LIGHTED LANTERNS', '14.50');

INSERT INTO PRODUCTS_TBL VALUES

('15', 'ASSORTED COSTUMES', '10.00');

INSERT INTO PRODUCTS_TBL VALUES

('9', 'CANDY CORN', '1.35');

INSERT INTO PRODUCTS_TBL VALUES

('6', 'PUMPKIN CANDY', '1.45');

INSERT INTO PRODUCTS_TBL VALUES

('87', 'PLASTIC SPIDERS', '1.05');

INSERT INTO PRODUCTS_TBL VALUES

('119', 'ASSORTED MASKS', '4.95');

INSERT INTO PRODUCTS_TBL VALUES

('1234', 'KEY CHAIN', '5.95');

INSERT INTO PRODUCTS_TBL VALUES

('2345', 'OAK BOOKSHELF', '59.99');

user
code.htm

		 Appendix B

		 Oracle Functions Reference

		 Character Functions

		 ASCII

		 ASCII Syntax

		 ASCII Examples

		 CHR

		 CHR Syntax

		 CHR Examples

		 CONCAT

		 CONCAT Syntax

		 CONCAT Example

		 INITCAP

		 INITCAP Syntax

		 INITCAP Example

		 INSTR

		 INSTR Syntax

		 INSTR Examples

		 INSTRB

		 INSTRB Syntax

		 INSTRB Examples

		 LENGTH

		 LENGTH Syntax

		 LENGTH Example

		 LENGTHB

		 LENGTHB Syntax

		 LENGTHB Example

		 LOWER

		 LOWER Syntax

		 LOWER Example

		 LPAD

		 LPAD Syntax

		 LPAD Examples

		 LTRIM

		 LTRIM Syntax

		 LTRIM Examples

		 NLS_INITCAP

		 NLS_INITCAP Syntax

		 NLS_INITCAP Example

		 NLS_LOWER

		 NLS_LOWER Syntax

		 NLS_LOWER Example

		 NLS_UPPER

		 NLS_UPPER Syntax

		 NLS_UPPER Example

		 NLSSORT

		 NLSSORT Syntax

		 NLSSORT Examples

		 REPLACE

		 REPLACE Syntax

		 REPLACE Examples

		 RPAD

		 RPAD Syntax

		 RPAD Examples

		 RTRIM

		 RTRIM Syntax

		 RTRIM Examples

		 SOUNDEX

		 SOUNDEX Syntax

		 SOUNDEX Example

		 SUBSTR

		 SUBSTR Syntax

		 SUBSTR Examples

		 SUBSTRB

		 SUBSTRB Syntax

		 SUBSTRB Example

		 TRANSLATE

		 TRANSLATE Syntax

		 TRANSLATE Example

		 TRIM

		 TRIM Syntax

		 TRIM Example

		 UPPER

		 UPPER Syntax

		 UPPER Example

		 Number Functions

		 ABS

		 ABS Syntax

		 ABS Example

		 ACOS

		 ACOS Syntax

		 ACOS Example

		 ADD MONTHS

		 ADD MONTHS Syntax

		 ADD MONTHS Example

		 ASIN

		 ASIN Syntax

		 ASIN Example

		 ATAN

		 ATAN Syntax

		 ATAN Example

		 ATAN2

		 ATAN2 Syntax

		 ATAN2 Example

		 CEIL

		 CEIL Syntax

		 CEIL Example

		 COS

		 COS Syntax

		 COS Example

		 COSH

		 COSH Syntax

		 COSH Example

		 EXP

		 EXP Syntax

		 EXP Example

		 FLOOR

		 FLOOR Syntax

		 FLOOR Example

		 LN

		 LN Syntax

		 LN Example

		 LOG

		 LOG Syntax

		 LOG Example

		 MOD

		 MOD Syntax

		 MOD Example

		 Syntax

		 Complex MOD Example

		 POWER

		 POWER Syntax

		 POWER Example

		 ROUND

		 ROUND Syntax

		 ROUND Example

		 SIGN

		 SIGN Syntax

		 SIGN Example

		 SIN

		 SIN Syntax

		 SIN Example

		 SINH

		 SINH Syntax

		 SINH Example

		 SQRT

		 SQRT Syntax

		 SQRT Example

		 TAN

		 TAN Syntax

		 TAN Example

		 TANH

		 TANH Syntax

		 TANH Example

		 TRUNC

		 TRUNC Syntax

		 TRUNC Example

		 DATE Functions

		 ADD_MONTHS

		 ADD_MONTHS Syntax

		 ADD_MONTHS Examples

		 LAST_DAY

		 LAST_DAY Syntax

		 LAST_DAY Examples

		 MONTHS_BETWEEN

		 MONTHS_BETWEEN Syntax

		 MONTHS_BETWEEN Examples

		 NEW_TIME

		 NEW_TIME Syntax

		 NEW_TIME Examples

		 NEXT_DAY

		 NEXT_DAY Syntax

		 NEXT_DAY Examples

		 ROUND

		 ROUND Syntax

		 ROUND Examples

		 SYSDATE

		 SYSDATE Syntax

		 SYSDATE Examples

		 TRUNC

		 TRUNC Syntax

		 TRUNC Example

		 Conversion Functions

		 CHARTOROWID

		 CHARTOROWID Syntax

		 CHARTOROWID Example

		 CONVERT

		 CONVERT Syntax

		 CONVERT Example

		 HEXTORAW

		 HEXTORAW Syntax

		 HEXTORAW Example

		 RAWTOHEX

		 RAWTOHEX Syntax

		 RAWTOHEX Example

		 ROWIDTOCHAR

		 ROWIDTOCHAR Syntax

		 ROWIDTOCHAR Example

		 TO_CHAR (with Dates)

		 TO_CHAR (with Dates) Syntax

		 TO_CHAR (with Dates) Examples

		 TO_CHAR (with Labels)

		 TO_CHAR (with Labels) Syntax

		 TO_CHAR (with Labels) Examples

		 TO_CHAR (with Numbers)

		 TO_CHAR (with Numbers) Syntax

		 TO_CHAR (with Numbers) Examples

		 TO_DATE

		 TO_DATE Syntax

		 TO_DATE Examples

		 TO_LOB

		 TO_LOB Syntax

		 TO_LOB Example

		 TO_MULTI_BYTE

		 TO_MULTI_BYTE Syntax

		 TO_MULTI_BYTE Example

		 TO_NUMBER

		 TO_NUMBER Syntax

		 TO_NUMBER Examples

		 TO_SINGLE_BYTE

		 TO_SINGLE_BYTE Syntax

		 TO_SINGLE_BYTE Example

		 Grouping Functions

		 AVG

		 AVG Syntax

		 AVG Example

		 COUNT

		 COUNT Syntax

		 COUNT Examples

		 GLB

		 GLB Syntax

		 LUB

		 LUB Syntax

		 MAX

		 MAX Syntax

		 MAX Example

		 MIN

		 MIN Syntax

		 MIN Example

		 STDDEV

		 STDDEV Syntax

		 STDDEV Example

		 SUM

		 SUM Syntax

		 SUM Examples

		 VARIANCE

		 VARIANCE Syntax

		 VARIANCE Example

		 Miscellaneous Functions

		 BFILENAME

		 BFILENAME Syntax

		 BFILENAME Example

		 DECODE

		 DECODE Syntax

		 DECODE Example

		 DUMP

		 DUMP Syntax

		 DUMP Example

		 EMPTY_BLOB

		 EMPTY_BLOB Syntax

		 EMPTY_BLOB Example

		 EMPTY_CLOB

		 EMPTY_CLOB Syntax

		 EMPTY_CLOB Example

		 GREATEST

		 GREATEST Syntax

		 GREATEST Example

		 GREATEST_LB

		 GREATEST_LB Syntax

		 LEAST

		 LEAST Syntax

		 LEAST Example

		 LEAST_LB

		 LEAST_LB Syntax

		 NLS_CHARSET_ID

		 NLS_CHARSET_ID Syntax

		 NLS_CHARSET_ID Example

		 NLS_CHARSET_NAME

		 NLS_CHARSET_NAME Syntax

		 NLS_CHARSET_NAME Example

		 NVL

		 NVL Syntax

		 NVL Example

		 SQLCODE

		 SQLCODE Syntax

		 SQLCODE Example

		 SQLERRM

		 SQLERRM Syntax

		 SQLERRM Example

		 UID

		 UID Syntax

		 UID Example

		 USER

		 USER Syntax

		 USER Example

		 USERENV

		 USERENV Syntax

		 USERENV Example

		 VSIZE

		 VSIZE Syntax

		 VSIZE Examples

[bookmark: _Toc463693825][bookmark: _Toc463695756][bookmark: Heading1]
 Appendix
B[bookmark: _Toc394808284][bookmark: _Toc463693550][bookmark: _Toc463695481][bookmark: _Toc463704768]

[bookmark: Heading2]
 Oracle Functions Reference

by Tom Luers

This appendix consists of descriptions and examples of Oracle functions.
The types of functions described include character functions, number functions,
date functions, conversion functions, grouping functions, and miscellaneous
functions. Each function is covered along with situations in which it would be
used, as well as the syntax of each function and one or more examples of each
function.[bookmark: _Toc394808285]

Just a Minute -
All the examples in this appendix are results from an IBM PC. Answers vary
depending on the character set. In addition, with any of the functions that use
dual-byte character systems, the output is reflected as a dual-byte character
system as well, not a single-byte system such as IBM PC
ASCII.[bookmark: _Toc463693551][bookmark: _Toc463695482][bookmark: _Toc463704769]

[bookmark: Heading3]
 Character Functions

The character functions deal exclusively with manipulating character
datatypes. These powerful functions allow you to manipulate a character string
down to the individual
character.[bookmark: _Toc394808286][bookmark: _Toc463693552][bookmark: _Toc463695483][bookmark: _Toc463704770]

[bookmark: Heading4]
 ASCII

Description: Returns the decimal equivalent of a single ASCII
character. If a string is passed, only the first character is translated. This
function translates whatever character set is in use, such as EBCDIC, ASCII, and
all the variants, from the appropriate lookup
table.[bookmark: _Toc394808287][bookmark: _Toc463693553][bookmark: _Toc463695484][bookmark: _Toc463704771]

[bookmark: Heading5]
 ASCII Syntax

ASCII(character to translate)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808288][bookmark: _Toc463693554][bookmark: _Toc463695485][bookmark: _Toc463704772]

[bookmark: Heading6]
 ASCII Examples

SELECT ASCII('T') from DUAL;

ASCII('T')

 84

SELECT ASCII('Tim') from DUAL;

ASCII('TIM')

 84

SELECT ASCII('t') from DUAL;

ASCII('T')

 116 [bookmark: _Toc394808289][bookmark: _Toc463693555][bookmark: _Toc463695486][bookmark: _Toc463704773]

[bookmark: Heading7]
 CHR

Description: Returns the corresponding character represented by
the decimal number passed in this function. The decimal equivalent must be
passed in an integer format. This function is the inverse of ASCII, and
the character returned depends on the character set of the operating system.

Time Saver -
You could use either the ASCII or the CHR function to
determine which character set is in use so that proper conversion can take place
if you're downloading data from the
database.[bookmark: _Toc394808290][bookmark: _Toc463693556][bookmark: _Toc463695487][bookmark: _Toc463704774]

[bookmark: Heading8]
 CHR Syntax

CHR(decimal number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808291][bookmark: _Toc463693557][bookmark: _Toc463695488][bookmark: _Toc463704775]

[bookmark: Heading9]
 CHR Examples

SELECT CHR(84) from DUAL;

C
-
T

SELECT CHR(65) from DUAL;

C
-
A

SELECT CHR(65) from DUAL;

C
A

μ[bookmark: _Toc394808292][bookmark: _Toc463693558][bookmark: _Toc463695489][bookmark: _Toc463704776]

[bookmark: Heading10]
 CONCAT

Description: Joins two character strings into one[md]in other
words, concatenates the two strings. The second string passed is appended to the
first string. As in the examples throughout the book, it is generally a good
idea to use the || operator rather than this function. Both achieve the
same result, but || uses fewer keystrokes, and the intent is easier to
spot.
[bookmark: _Toc394808293][bookmark: _Toc463693559][bookmark: _Toc463695490][bookmark: _Toc463704777]

[bookmark: Heading11]
 CONCAT Syntax

CONCAT(string1,string2)

Where Used: PL/SQL and SQL statements

Time Saver -
When concatenating strings, don't forget the space; otherwise, words
run
together.[bookmark: _Toc394808294][bookmark: _Toc463693560][bookmark: _Toc463695491][bookmark: _Toc463704778]

[bookmark: Heading12]
 CONCAT Example

SELECT
CONCAT('The quick brown fox ', 'jumped over the lazy dog')
"Concat",
 'The quick brown fox ',
'jumped over the lazy dog' "|| Operator"
 from DUAL;

Concat
'THEQUICKBROWNFOX' || Operator
--
-- -------------------- --------
The quick brown fox jumped over the lazy dog The quick brown
 fox jumped over the lazy dog [bookmark: _Toc394808295][bookmark: _Toc463693561][bookmark: _Toc463695492][bookmark: _Toc463704779]

[bookmark: Heading13]
 INITCAP

Description: Capitalizes the first letter only for each word in a
string of characters and converts, if necessary, the remaining characters in the
word to lowercase. Nonalphabetic characters, such as spaces, numbers, and
punctuation, remain
unchanged.[bookmark: _Toc394808296][bookmark: _Toc463693562][bookmark: _Toc463695493][bookmark: _Toc463704780]

[bookmark: Heading14]
 INITCAP Syntax

INITCAP(input_string)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808297][bookmark: _Toc463693563][bookmark: _Toc463695494][bookmark: _Toc463704781]

[bookmark: Heading15]
 INITCAP Example

SELECT INITCAP('NOW is the tImE for AlL GOOd peoplE to come to
 the AID of Their Country')
 "Quote of the Day"
 from DUAL;

Quote of the Day

Now Is The Time For All Good People To Come To The Aid Of Their Country [bookmark: _Toc394808298][bookmark: _Toc463693564][bookmark: _Toc463695495][bookmark: _Toc463704782]

[bookmark: Heading16]
 INSTR

Description: Finds the nth occurrence of a string in a
substring, starting from the starting position specified. This function is
case-sensitive, so 'the', 'The', and
'tHe' are three different strings and do not match. If
string2 is not found in string1, either because it
does not exist or because the starting position or nth occurrence is out
of range, the function returns the value 0. By default, the starting
position and nth occurrence are both set equal to 1. If the
starting position is positive, the scan occurs from left to right. Likewise, if
the starting position is negative, then the scan goes from right to
left.[bookmark: _Toc394808299][bookmark: _Toc463693565][bookmark: _Toc463695496][bookmark: _Toc463704783]

[bookmark: Heading17]
 INSTR Syntax

INSTR(string1_compared,string2_to_compare,<starting position>,
 <the_nth_occurrence>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808300][bookmark: _Toc463693566][bookmark: _Toc463695497][bookmark: _Toc463704784]

[bookmark: Heading18]
 INSTR Examples

SELECT INSTR('Now is the time for Tim to get his act together','tim')
 "INSTR_TEST"
 from DUAL;

INSTR_TEST

 12

SELECT INSTR('Now is the time for Tim to get his act together','tim',1,2)
 "INSTR_TEST"
 from DUAL;

INSTR_TEST

 0

Just a Minute -
The second occurrence can't be found because the match is case
sensitive. In other words, the statement is looking for 'tim'
in lowercase and will not match on 'Tim'.

You can always guarantee a match by using the
following code:

SELECT INSTR(UPPER('Now is the time for Tim to get his act
 together'),UPPER('tim'),1,2)
 "INSTR_TEST"
 from DUAL;

INSTR_TEST

 21

SELECT INSTR('Now is the time for Tim to get his act together','tim',-1)
 "INSTR_TEST"
 from DUAL;

INSTR_TEST

 12

SELECT INSTR('Now is the time for Tim to get his act together','tim',16)
 "INSTR_TEST"
 from DUAL;

INSTR_TEST

 0 [bookmark: _Toc394808301][bookmark: _Toc463693567][bookmark: _Toc463695498][bookmark: _Toc463704785]

[bookmark: Heading19]
 INSTRB

Description: Performs the same function as INSTR, except
that the starting position, the nth occurrence, and the return values are
all expressed in bytes. For single-byte character systems (1 byte per
character), INSTRB returns the same results as INSTR. For
double-byte systems, you get a different
response.[bookmark: _Toc394808302][bookmark: _Toc463693568][bookmark: _Toc463695499][bookmark: _Toc463704786]

[bookmark: Heading20]
 INSTRB Syntax

INSTRB(string1_compared,string2_to_compare,<starting position>,
 <the_nth_occurrence>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808303][bookmark: _Toc463693569][bookmark: _Toc463695500][bookmark: _Toc463704787]

[bookmark: Heading21]
 INSTRB Examples

SELECT INSTRB('Now is the time for Tim to get his act together','tim')
 "INSTR_TEST"
 from DUAL;

INSTR_TEST

 12 [bookmark: _Toc394808304][bookmark: _Toc463693570][bookmark: _Toc463695501][bookmark: _Toc463704788]

[bookmark: Heading22]
 LENGTH

Description: Returns the length of a string, including padding for
datatype CHAR. If the input string has a value of NULL,
NULL is returned.
[bookmark: _Toc394808305][bookmark: _Toc463693571][bookmark: _Toc463695502][bookmark: _Toc463704789]

[bookmark: Heading23]
 LENGTH Syntax

LENGTH(input_string)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808306][bookmark: _Toc463693572][bookmark: _Toc463695503][bookmark: _Toc463704790]

[bookmark: Heading24]
 LENGTH Example

SET SERVEROUTPUT ON
DECLARE
 v_PASS CHAR(12) := 'GREAT';
BEGIN
 IF LENGTH(v_PASS) > 10 THEN
 DBMS_OUTPUT.PUT_LINE('The length including the padding is '
 || LENGTH(v_PASS));
 END IF;
 IF LENGTH(RTRIM(v_PASS,' ')) <= 5 THEN
 DBMS_OUTPUT.PUT_LINE('Password too short. Your length is: '
 || LENGTH(RTRIM(v_PASS,' ')));
 END IF;
END;

The length including the padding is 12
Password too short. Your length is: 5

This example uses a function discussed later in this appendix called
RTRIM, which is used in this case to trim the padded spaces of type
CHAR.

You can easily mix and match functions to allow for
your desired result and
complexity.[bookmark: _Toc394808307][bookmark: _Toc463693573][bookmark: _Toc463695504][bookmark: _Toc463704791]

[bookmark: Heading25]
 LENGTHB

Description: This function is identical to the LENGTH
function except that it returns the length of the string in bytes. If a
single-byte-per-character operating system is being used, both LENGTH and
LENGTHB return the same value. If a double-byte system is used, it
doubles the answer.
[bookmark: _Toc394808308][bookmark: _Toc463693574][bookmark: _Toc463695505][bookmark: _Toc463704792]

[bookmark: Heading26]
 LENGTHB Syntax

LENGTHB(input_string)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808309][bookmark: _Toc463693575][bookmark: _Toc463695506][bookmark: _Toc463704793]

[bookmark: Heading27]
 LENGTHB Example

Just a Minute -
The following example assumes a double-byte character system.

SELECT LENGTHB('This is a test if double byte') "Double_Byte"
 from DUAL;

Double_Byte

 29 [bookmark: _Toc394808310][bookmark: _Toc463693576][bookmark: _Toc463695507][bookmark: _Toc463704794]

[bookmark: Heading28]
 LOWER

Description: Returns all characters in a string in lowercase.
Nonalphabetic characters, such as punctuation and numbers, are unaffected by
this function. This function returns the same datatype as sent in the input
string; therefore, type VARCHAR2 returns VARCHAR2 and CHAR
returns
CHAR.[bookmark: _Toc394808311][bookmark: _Toc463693577][bookmark: _Toc463695508][bookmark: _Toc463704795]

[bookmark: Heading29]
 LOWER Syntax

LOWER(input_string)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808312][bookmark: _Toc463693578][bookmark: _Toc463695509][bookmark: _Toc463704796]

[bookmark: Heading30]
 LOWER Example

SELECT LOWER('THIS IS a Test OF tHe LoWER Function') "Lower Function"
 from DUAL;

Lower Function

this is a test of the lower function [bookmark: _Toc394808313][bookmark: _Toc463693579][bookmark: _Toc463695510][bookmark: _Toc463704797]

[bookmark: Heading31]
 LPAD

Description: Pads a string of characters, starting from the left,
up to the maximum of the length specified, with any character. If no character
is selected, the single space is used for default, similarly to the RPAD
function.

Time Saver -
You can use this function in combination with REPLACE to reformat and
display numbers in a new format. For instance, you could remove the $ from
$10000 with REPLACE and add padding with zeros and a length of 10 to make
the number appear as a numeric entry:
0000010000.[bookmark: _Toc394808314][bookmark: _Toc463693580][bookmark: _Toc463695511][bookmark: _Toc463704798]

[bookmark: Heading32]
 LPAD Syntax

LPAD(input_string,total_string_length,<character_to_pad>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc463693581][bookmark: _Toc463695512][bookmark: _Toc463704799]

[bookmark: Heading33]
 LPAD Examples

SELECT LPAD('Test default character',25) "Default Pad"
 from DUAL;

Default Pad

 Test default character

SELECT LPAD('New Pad Character',25,'@') "Default Pad"
 from DUAL;

Default Pad

@@@@@@@@New Pad Character

SELECT LPAD('New Pad Character',15,'@') "Default Pad"
 from DUAL;

Default Pad

New Pad Character [bookmark: _Toc394808315][bookmark: _Toc463693582][bookmark: _Toc463695513][bookmark: _Toc463704800]

[bookmark: Heading34]
 LTRIM

Description: Allows you to remove characters that you specify from
the beginning of a string until the first occurrence in the string that does not
contain those characters, and then the function returns the remaining characters
in the string. This function is useful to remove spaces, all numbers (the string
set you would specify for this is '0123456789'), words, or
anything else required. If the string of character(s) to remove is not
specified, the default is a single blank.
[bookmark: _Toc394808316][bookmark: _Toc463693583][bookmark: _Toc463695514][bookmark: _Toc463704801]

[bookmark: Heading35]
 LTRIM Syntax

LTRIM(input_string,characters_to remove)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808317][bookmark: _Toc463693584][bookmark: _Toc463695515][bookmark: _Toc463704802]

[bookmark: Heading36]
 LTRIM Examples

SELECT LTRIM(' You will remove leading spaces')
 "Space Removal as Default"
 from DUAL;

Space Removal as Default

You will remove leading spaces

SELECT LTRIM('56911Row ID','0123456789') "Remove Numbers"
 from DUAL;

Remove

Row ID

SELECT LTRIM('AMPMStops Here before removing AM here','AMP')
 "Remove Letters"
 from DUAL;

Remove Letters

Stops Here before removing AM here [bookmark: _Toc394808318][bookmark: _Toc463693585][bookmark: _Toc463695516][bookmark: _Toc463704803]

[bookmark: Heading37]
 NLS_INITCAP

Description: Works the same as INITCAP, returning the first
letter capitalized and the remaining letters lowercased, except that it has an
added National Language Support (NLS) parameter to change the sort sequence
based on the language. If the NLS_SORT parameter is not used, the
function operates the same as INITCAP. Refer to Oracle8i Server SQL
Reference for all available NLS parameters.
[bookmark: _Toc394808319][bookmark: _Toc463693586][bookmark: _Toc463695517][bookmark: _Toc463704804]

[bookmark: Heading38]
 NLS_INITCAP Syntax

NLS_INITCAP('Input String',<'NLS_SORT=parameter'>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808320][bookmark: _Toc463693587][bookmark: _Toc463695518][bookmark: _Toc463704805]

[bookmark: Heading39]
 NLS_INITCAP Example

SELECT NLS_INITCAP('This is a test of a nls_initcap with ijsland',
 'NLS_SORT=xDutch')
 from DUAL;

NLS_INITCAP('THISISATESTOFANLS_INITCAPWITHIJ
--
This Is A Test Of A Nls_Initcap With IJsland [bookmark: _Toc394808321][bookmark: _Toc463693588][bookmark: _Toc463695519][bookmark: _Toc463704806]

[bookmark: Heading40]
 NLS_LOWER

Description: Operates in the same manner as the function
LOWER, except that NLS_LOWER has an optional NLS_SORT
parameter to specify the language and characters returned. All characters are
returned in lowercase, and all nonalphabetic characters are unaffected. If no
NLS_SORT parameter is used, this function operates identically to the
function LOWER. Refer to Oracle7 Server SQL Reference for all
available NLS
parameters.[bookmark: _Toc394808322][bookmark: _Toc463693589][bookmark: _Toc463695520][bookmark: _Toc463704807]

[bookmark: Heading41]
 NLS_LOWER Syntax

NLS_LOWER('Input String',<'NLS_SORT=parameter'>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808323][bookmark: _Toc463693590][bookmark: _Toc463695521][bookmark: _Toc463704808]

[bookmark: Heading42]
 NLS_LOWER Example

SELECT NLS_LOWER('This is a test OF a nls_LOWER with IJSLAND',
 'NLS_SORT=XDUTCH')
 from DUAL;

NLS_LOWER('THISISATESTOFANLS_LOWERWITHIJS

this is a test of a nls_lowerwith ijsland [bookmark: _Toc394808324][bookmark: _Toc463693591][bookmark: _Toc463695522][bookmark: _Toc463704809]

[bookmark: Heading43]
 NLS_UPPER

Description: Operates in the same manner as the function
UPPER, except that you have an optional NLS_SORT parameter to
specify the language and characters returned. All characters are returned in
uppercase, and all nonalphabetic characters are unaffected. If no
NLS_SORT parameter is used, this function operates identically to the
function UPPER. Refer to Oracle7 Server SQL Reference for all
available NLS parameters.
[bookmark: _Toc394808325][bookmark: _Toc463693592][bookmark: _Toc463695523][bookmark: _Toc463704810]

[bookmark: Heading44]
 NLS_UPPER Syntax

NLS_UPPER('Input String',<'NLS_SORT=parameter'>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808326][bookmark: _Toc463693593][bookmark: _Toc463695524][bookmark: _Toc463704811]

[bookmark: Heading45]
 NLS_UPPER Example

SELECT NLS_UPPER('This is a test OF a nls_uppER with ijslanD',
 'NLS_SORT=XDutch')
 from DUAL;

NLS_UPPER('THISISATESTOFANLS_UPPERWITHIJSL
--
THIS IS A TEST OF A NLS_UPPER WITH IJSLAND [bookmark: _Toc394808327][bookmark: _Toc463693594][bookmark: _Toc463695525][bookmark: _Toc463704812]

[bookmark: Heading46]
 NLSSORT

Description: Returns the input string in bytes to reflect the
methodology used by Oracle to sort the string sequence. All character values are
converted into bytes and sorted by the optional NLSSORT parameter. If no
NLSSORT parameter is specified, the default sort sequence is used. Refer
to Oracle7 Server SQL Reference for all available NLS
parameters.[bookmark: _Toc394808328][bookmark: _Toc463693595][bookmark: _Toc463695526][bookmark: _Toc463704813]

[bookmark: Heading47]
 NLSSORT Syntax

NLSSORT('Input String',<'NLSSORT=parameter'>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808329][bookmark: _Toc463693596][bookmark: _Toc463695527][bookmark: _Toc463704814]

[bookmark: Heading48]
 NLSSORT Examples

SELECT NLSSORT('This returns bytes')
 from DUAL;

NLSSORT('THISRETURNSBYTES')

546869732072657475726E7320627974657300

By examining the returned string of numbers, you can pick out the
representation of ASCII characters. For example, each space has a value of
32.
[bookmark: _Toc394808330][bookmark: _Toc463693597][bookmark: _Toc463695528][bookmark: _Toc463704815]

[bookmark: Heading49]
 REPLACE

Description: Allows you to replace characters or NULL by
using a search string from an input string. If no replacement characters are
specified, the search string characters are evaluated to NULL and removed
from the input string. This function is case-sensitive, so
'tim', 'Tim', and 'tIm' have
three different meanings and are three different search strings. This function
is useful to help you get rid of unwanted punctuation. For instance, if you are
pulling data from a CHAR or VARCHAR2 field that contains a single
quote ('), this would cause errors because you would have an
unbalanced set of quotes. This function is also great for search-and-replace
missions such as changing the name of a company name that has been sold. Also,
if you wanted to change all occurrences of Corporation to Corp,
you could specify the search string as 'oration', with no
replace value. Don't forget that you can always nest the REPLACE
function for complex
changes.[bookmark: _Toc394808331][bookmark: _Toc463693598][bookmark: _Toc463695529][bookmark: _Toc463704816]

[bookmark: Heading50]
 REPLACE Syntax

REPLACE('Input String',search_string,<replacement_string>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808332][bookmark: _Toc463693599][bookmark: _Toc463695530][bookmark: _Toc463704817]

[bookmark: Heading51]
 REPLACE Examples

SELECT REPLACE('This is a test of that','th')
 from DUAL;

REPLACE('THISISATEST

This is a test of at

This function is case-sensitive, but you can change that by converting
all characters to UPPER or LOWER. See the function INSTR
for an example of handling a case-sensitive function.

SELECT REPLACE('You are proud affiliates of NBC Corp.','NBC','MSNBC')
 from DUAL;

REPLACE('WEAREPROUDAFFILIATESOFNBCCORP

You are proud affiliates of MSNBC Corp.

SELECT REPLACE('You will remove it''s apostrophe','''')
 from DUAL;

REPLACE('WEWILLREMOVEIT''SAPO

You will remove its apostrophe [bookmark: _Toc394808333][bookmark: _Toc463693600][bookmark: _Toc463695531][bookmark: _Toc463704818]

[bookmark: Heading52]
 RPAD

Description: Pads a string of characters at the end of a string up
to the length specified with any character or characters. If no character is
selected, a single space is used by default, as with the LPAD function.
[bookmark: _Toc394808334][bookmark: _Toc463693601][bookmark: _Toc463695532][bookmark: _Toc463704819]

[bookmark: Heading53]
 RPAD Syntax

RPAD(input_string,total_string_length,<character_to_pad>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc463693602][bookmark: _Toc463695533][bookmark: _Toc463704820]

[bookmark: Heading54]
 RPAD Examples

SELECT RPAD('Test default character',25) "Default Pad"
 from DUAL;

Default Pad

Test default character

SELECT RPAD('New Pad Character',25,'@') "Default Pad"
 from DUAL;

Default Pad

New Pad Character@@@@@@@@

SELECT RPAD('New Pad Character',15,'@') "Default Pad"
 from DUAL;

Default Pad

New Pad Charact [bookmark: _Toc394808335][bookmark: _Toc463693603][bookmark: _Toc463695534][bookmark: _Toc463704821]

[bookmark: Heading55]
 RTRIM

Description: Allows you to remove characters that you specify from
the end of a string until the first occurrence in the string that does not
contain those characters. Then the function returns the remaining characters in
the string. This function is useful to remove spaces, all numbers (the string
set you would specify for this is '0123456789'), words, or
anything else required. If the string of characters to remove is not specified,
the default is a single blank.
[bookmark: _Toc394808336][bookmark: _Toc463693604][bookmark: _Toc463695535][bookmark: _Toc463704822]

[bookmark: Heading56]
 RTRIM Syntax

RTRIM(input_string,characters_to remove)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808337][bookmark: _Toc463693605][bookmark: _Toc463695536][bookmark: _Toc463704823]

[bookmark: Heading57]
 RTRIM Examples

SELECT RTRIM(' You will remove ending spaces ')
 "Space Removal as Default"
 from DUAL;

Space Removal as Default

 You will remove ending spaces

SELECT RTRIM('DYZ355683864','0123456789') "Remove Numbers"
 from DUAL;

Rem

DYZ

SELECT RTRIM('The time is now 10:00 PM','AMP') "Remove Letters"
 from DUAL;

Remove Letters

The time is now 10:00 [bookmark: _Toc394808338][bookmark: _Toc463693606][bookmark: _Toc463695537][bookmark: _Toc463704824]

[bookmark: Heading58]
 SOUNDEX

Description: Returns the phonetic representation of a string of
characters. You can then compare based on how the word is pronounced, not how
the word is spelled. The following rules apply:

			 	SOUNDEX is not case sensitive.

			 	The first five consonants are used to generate the return value,
so beammeupscottynow is the same as beammeupscot.

			 	The return value always begins with the first letter in the
string.

			 	All vowels are ignored when computing the return value to match,
unless the vowel is the first letter in the string.

Donald Knuth, in the Art of Computer Programming, defined the
algorithm for the SOUNDEX function:

			 	Keep the first letter of the string and remove all vowel
occurrences and a few consonants (that is, a, e, h, i, o, w, and
y).

			 	Assign numbers to the remaining letters:

		

Number Assignment

		

Letters

		

1

		

b,f,p,v

		

2

		

c,g,j,k,q,s,x,z

		

3

		

d,t

		

4

		

l

		

5

		

m,n

		

6

		

r

			 	If two or more numbers are in sequence, remove all but the first
number.

			 	Return the first 4 bytes, right-padded with 0.

This function enables you to perform searches without knowing the
spelling, similarly to the LIKE operator in many different languages. You
could search for 'Cathy' and find 'Cathy',
'Kathy', 'Kathi', 'Cathi',
and so on if you did not know how Cathy was
spelled.[bookmark: _Toc394808339][bookmark: _Toc463693607][bookmark: _Toc463695538][bookmark: _Toc463704825]

[bookmark: Heading59]
 SOUNDEX Syntax

SOUNDEX(input_string)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808340][bookmark: _Toc463693608][bookmark: _Toc463695539][bookmark: _Toc463704826]

[bookmark: Heading60]
 SOUNDEX Example

SET SERVEROUTPUT ON
DECLARE
 v_String1 VARCHAR2(12) := 'their';
 v_String2 VARCHAR2(12) := 'ThERe';
BEGIN
 IF SOUNDEX(v_String1) = SOUNDEX(v_String2) THEN
 DBMS_OUTPUT.PUT_LINE('You have a match!!!!!');
 ELSE
 DBMS_OUTPUT.PUT_LINE('You do not have a match!!!!!');
 END IF;
 DBMS_OUTPUT.PUT_LINE('The phonetic value of their is ' ||
 SOUNDEX(v_String1));
 DBMS_OUTPUT.PUT_LINE('The phonetic value of ThERe is ' ||
 SOUNDEX(v_String1));
END;
/

The phonetic value of their is T600
The phonetic value of ThERe is T600 [bookmark: _Toc394808341][bookmark: _Toc463693609][bookmark: _Toc463695540][bookmark: _Toc463704827]

[bookmark: Heading61]
 SUBSTR

Description: Extracts a string from within a string, by specifying
the starting position and total length of the string to extract. The following
rules apply:

			 	If the total length is not specified, the entire string is
used.

			 	If the starting position or total length is passed as a real
number (that is, contains a fraction), the value is automatically truncated to
an integer before processing.

			 	If the total length is less than 1, NULL is
returned.

			 	If the starting position is positive, you start counting from the
left to arrive at the starting position.

			 	If the starting position is negative, you start counting from the
right to arrive at the starting
position.[bookmark: _Toc394808342][bookmark: _Toc463693610][bookmark: _Toc463695541][bookmark: _Toc463704828]

[bookmark: Heading62]
 SUBSTR Syntax

SUBSTR(input_string,starting_position,<number_of_characters_to_extract>)

Where Used: PL/SQL and SQL statements

Time Saver -
By combining SUBSTR with INSTR to find the location of a set
of characters, you can dynamically extract words. The length can also be
computed dynamically by using the LENGTH
function.[bookmark: _Toc394808343][bookmark: _Toc463693611][bookmark: _Toc463695542][bookmark: _Toc463704829]

[bookmark: Heading63]
 SUBSTR Examples

SELECT SUBSTR('You will extract Tim from here starting from left',18,3)
 "Extract_Example"
 from DUAL;

Ext

Tim

SELECT SUBSTR('You will extract Tim from here starting from right',-33,3)
 "Extract_Example"
 from DUAL;

Ext

Tim

The next query uses variables to determine the starting point and the
length to extract:

SELECT SUBSTR('You will extract Tim from here starting from left',INSTR
 ('You will extract Tim from here starting from left','Tim')
,LENGTH('Tim')) "Extract_Example"
 from DUAL;

Ext

Tim [bookmark: _Toc394808344][bookmark: _Toc463693612][bookmark: _Toc463695543][bookmark: _Toc463704830]

[bookmark: Heading64]
 SUBSTRB

Description: Operates the same as SUBSTR, except that the
starting position and length are expressed in bytes. If you are in a
single-byte-per-character system, this operates identically to the function
SUBSTR.
[bookmark: _Toc394808345][bookmark: _Toc463693613][bookmark: _Toc463695544][bookmark: _Toc463704831]

[bookmark: Heading65]
 SUBSTRB Syntax

SUBSTRB(input_string,starting_position,<number_of_characters_to_extract>)

Where Used: PL/SQL and SQL statements

Time Saver -
If you combine SUBSTRB with INSTR to find the location of a
set of characters, you can dynamically extract words. The length can also be
computed dynamically by using the LENGTH
function.[bookmark: _Toc394808346][bookmark: _Toc463693614][bookmark: _Toc463695545][bookmark: _Toc463704832]

[bookmark: Heading66]
 SUBSTRB Example

SELECT SUBSTRB('You will extract Tim from here starting from left',33,6)
 "Extract_Example"
 from DUAL;

Ext

tartin [bookmark: _Toc394808347][bookmark: _Toc463693615][bookmark: _Toc463695546][bookmark: _Toc463704833]

[bookmark: Heading67]
 TRANSLATE

Description: Allows you to replace all occurrences of each
character in from_string with the characters from
to_string. If from_string is shorter than
to_string, to_string truncates. When using this
function, there are no optional parameters. If to_string is
NULL, the function returns NULL. This function is
case-sensitive.[bookmark: _Toc394808348][bookmark: _Toc463693616][bookmark: _Toc463695547][bookmark: _Toc463704834]

[bookmark: Heading68]
 TRANSLATE Syntax

TRANSLATE(input_string,from_string,to_string)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808349][bookmark: _Toc463693617][bookmark: _Toc463695548][bookmark: _Toc463704835]

[bookmark: Heading69]
 TRANSLATE Example

SELECT TRANSLATE('This is a test of that','th','newstring')
 from DUAL;

TRANSLATE('THISISATEST

Teis is a nesn of nean [bookmark: _Toc463693618][bookmark: _Toc463695549][bookmark: _Toc463704836]

[bookmark: Heading70]
 TRIM

Description: Enables you to trim leading and/or trailing
characters from a character
string.[bookmark: _Toc463693619][bookmark: _Toc463695550][bookmark: _Toc463704837]

[bookmark: Heading71]
 TRIM Syntax

TRIM (trim location,trim character FROM trim source)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc463693620][bookmark: _Toc463695551][bookmark: _Toc463704838]

[bookmark: Heading72]
 TRIM Example

Just a Minute -
This first example trims leading and trailing (the default behavior of this
function) zeros from the number source.

SELECT TRIM (0 FROM 067270676800) "TRIM Example"
FROM DUAL;

TRIM example

672706768

Just a Minute -
The next two examples illustrate the other two ways to use the TRIM
function.

SELECT TRIM (LEADING, 0 FROM 067270676800) "TRIM Example"
FROM DUAL;

TRIM example

67270676800

SELECT TRIM (TRAILING, 0 FROM 067270676800) "TRIM Example"
FROM DUAL;

TRIM example

0672706768

[bookmark: Heading73]
[bookmark: _Toc394808350][bookmark: _Toc463693621][bookmark: _Toc463695552][bookmark: _Toc463704839]
UPPER

Description: Returns all characters in a string in uppercase.
Nonalphabetic characters, such as punctuation and numbers, are unaffected by
this function. This function returns the same datatype as sent in the input
string; therefore, type VARCHAR2 returns VARCHAR2 and CHAR
returns
CHAR.[bookmark: _Toc394808351][bookmark: _Toc463693622][bookmark: _Toc463695553][bookmark: _Toc463704840]

[bookmark: Heading74]
 UPPER Syntax

UPPER(input_string)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808352][bookmark: _Toc463693623][bookmark: _Toc463695554][bookmark: _Toc463704841]

[bookmark: Heading75]
 UPPER Example

SELECT UPPER('THIS IS a Test OF tHe Upper Function for the 1st time')
 "Upper Function"
 from DUAL;

Upper Function

THIS IS A TEST OF THE UPPER FUNCTION FOR THE 1ST TIME [bookmark: _Toc394808353][bookmark: _Toc463693624][bookmark: _Toc463695555][bookmark: _Toc463704842]

[bookmark: Heading76]
 Number Functions

The number functions are accurate to 36 decimal places. These functions
manipulate number
datatypes.[bookmark: _Toc394808354][bookmark: _Toc463693625][bookmark: _Toc463695556][bookmark: _Toc463704843]

[bookmark: Heading77]
 ABS

Description: Returns the absolute value of any number passed.
Whether the number passed is negative or positive, the absolute value always
returns the number as
positive.[bookmark: _Toc394808355][bookmark: _Toc463693626][bookmark: _Toc463695557][bookmark: _Toc463704844]

[bookmark: Heading78]
 ABS Syntax

ABS(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808356][bookmark: _Toc463693627][bookmark: _Toc463695558][bookmark: _Toc463704845]

[bookmark: Heading79]
 ABS Example

SELECT ABS(-2.345),ABS(19.99) from DUAL;

ABS(-2.345) ABS(19.99)
----------- ----------
2.345 19.99 [bookmark: _Toc394808357][bookmark: _Toc463693628][bookmark: _Toc463695559][bookmark: _Toc463704846]

[bookmark: Heading80]
 ACOS

Description: Returns the arc cosine in radians of any number
passed to the function. The input range is from -1 to 1, and the output range is
0 to
pi.[bookmark: _Toc394808358][bookmark: _Toc463693629][bookmark: _Toc463695560][bookmark: _Toc463704847]

[bookmark: Heading81]
 ACOS Syntax

ACOS(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808359][bookmark: _Toc463693630][bookmark: _Toc463695561][bookmark: _Toc463704848]

[bookmark: Heading82]
 ACOS Example

SELECT ACOS(-.33), ACOS(1) from DUAL;

ACOS(-.33) ACOS(1)
---------- ---------
 1.9070999 0 [bookmark: _Toc463693631][bookmark: _Toc463695562][bookmark: _Toc463704849]

[bookmark: Heading83]
 ADD MONTHS

Description: Returns the date D plus N months. The
argument N can be any integer. If D is the last day of the month
or if the resulting month has fewer days than the day component of D,
then the result is the last day of the resulting month. Otherwise, the result
has the same day component as
D.[bookmark: _Toc463693632][bookmark: _Toc463695563][bookmark: _Toc463704850]

[bookmark: Heading84]
 ADD MONTHS Syntax

ADD MONTHS (D,N)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc463693633][bookmark: _Toc463695564][bookmark: _Toc463704851]

[bookmark: Heading85]
 ADD MONTHS Example

SELECT TO_CHAR(ADD_MONTHS(hiredate,1), 'DD-MON-YYYY') "Next month"
FROM emp WHERE ename = 'Riley';
Next Month
21-APR-1981 [bookmark: _Toc394808360][bookmark: _Toc463693634][bookmark: _Toc463695565][bookmark: _Toc463704852]

[bookmark: Heading86]
 ASIN

Description: Returns the arc sine in radians of any number passed
to the function. The input range is from -1 to 1, and the output range is -pi/2
to pi/2.
[bookmark: _Toc394808361][bookmark: _Toc463693635][bookmark: _Toc463695566][bookmark: _Toc463704853]

[bookmark: Heading87]
 ASIN Syntax

ASIN(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808362][bookmark: _Toc463693636][bookmark: _Toc463695567][bookmark: _Toc463704854]

[bookmark: Heading88]
 ASIN Example

SELECT ASIN(-.33), ASIN(1) from DUAL;

ASIN(-.33) ASIN(1)
---------- ---------
 -.3363036 1.5707963 [bookmark: _Toc394808363][bookmark: _Toc463693637][bookmark: _Toc463695568][bookmark: _Toc463704855]

[bookmark: Heading89]
 ATAN

Description: Returns the arc tangent in radians of any number
passed to the function. The input range is infinity, meaning unbounded at both
ends, and the output range is -pi/2 to
pi/2.[bookmark: _Toc394808364][bookmark: _Toc463693638][bookmark: _Toc463695569][bookmark: _Toc463704856]

[bookmark: Heading90]
 ATAN Syntax

ATAN(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808365][bookmark: _Toc463693639][bookmark: _Toc463695570][bookmark: _Toc463704857]

[bookmark: Heading91]
 ATAN Example

SELECT ATAN(-10.33), ATAN(1),ATAN(25) from DUAL;

ATAN(-10.33) ATAN(1) ATAN(25)
------------ --------- ---------
 -1.474292 .78539816 1.5308176 [bookmark: _Toc394808366][bookmark: _Toc463693640][bookmark: _Toc463695571][bookmark: _Toc463704858]

[bookmark: Heading92]
 ATAN2

Description: Returns the arc tangent in radians of the two numbers
(y/x) passed to the function. The input range is infinity, meaning
unbounded at both ends, and the output range is -pi to
pi.[bookmark: _Toc394808367][bookmark: _Toc463693641][bookmark: _Toc463695572][bookmark: _Toc463704859]

[bookmark: Heading93]
 ATAN2 Syntax

ATAN2(input_number_y,input_number_x)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808368][bookmark: _Toc463693642][bookmark: _Toc463695573][bookmark: _Toc463704860]

[bookmark: Heading94]
 ATAN2 Example

SELECT ATAN2(-10.33,5), ATAN2(1,5),ATAN2(25,25) from DUAL;

ATAN2(-10.33,5) ATAN2(1,5) ATAN2(25,25)
--------------- ---------- ------------
 -1.120008 .19739556 .78539816 [bookmark: _Toc394808369][bookmark: _Toc463693643][bookmark: _Toc463695574][bookmark: _Toc463704861]

[bookmark: Heading95]
 CEIL

Description: Returns the value representing the smallest integer
that is greater than or equal to
input_number.[bookmark: _Toc394808370][bookmark: _Toc463693644][bookmark: _Toc463695575][bookmark: _Toc463704862]

[bookmark: Heading96]
 CEIL Syntax

CEIL(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808371][bookmark: _Toc463693645][bookmark: _Toc463695576][bookmark: _Toc463704863]

[bookmark: Heading97]
 CEIL Example

SELECT CEIL(9),CEIL(9.6),CEIL(-12),CEIL(-12.3) from DUAL;

CEIL(9) CEIL(9.6) CEIL(-12) CEIL(-12.3)
--------- --------- --------- -----------
 9 10 -12 -12 [bookmark: _Toc394808372][bookmark: _Toc463693646][bookmark: _Toc463695577][bookmark: _Toc463704864]

[bookmark: Heading98]
 COS

Description: Returns the cosine of any number passed to the
function as an angle, in
radians.[bookmark: _Toc394808373][bookmark: _Toc463693647][bookmark: _Toc463695578][bookmark: _Toc463704865]

[bookmark: Heading99]
 COS Syntax

COS(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808374][bookmark: _Toc463693648][bookmark: _Toc463695579][bookmark: _Toc463704866]

[bookmark: Heading100]
 COS Example

SELECT COS(0), COS(-30),COS(180),COS(-265),COS(360) from DUAL;

COS(0) COS(-30) COS(180) COS(-265) COS(360)
--------- --------- --------- --------- ---------
 1 .15425145 -.5984601 .44804667 -.2836911 [bookmark: _Toc394808375][bookmark: _Toc463693649][bookmark: _Toc463695580][bookmark: _Toc463704867]

[bookmark: Heading101]
 COSH

Description: Returns the hyperbolic cosine of any number passed to
the function.
[bookmark: _Toc394808376][bookmark: _Toc463693650][bookmark: _Toc463695581][bookmark: _Toc463704868]

[bookmark: Heading102]
 COSH Syntax

COSH(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808377][bookmark: _Toc463693651][bookmark: _Toc463695582][bookmark: _Toc463704869]

[bookmark: Heading103]
 COSH Example

SELECT COSH(0), COSH(-30),COSH(180),COSH(-265),COSH(360/22.3) from DUAL;

COSH(0) COSH(-30) COSH(180) COSH(-265) COSH(360/22.3)
--------- --------- --------- ---------- --------------
 1 5.343E+12 7.447E+77 6.12E+114 5128637.4 [bookmark: _Toc394808378][bookmark: _Toc463693652][bookmark: _Toc463695583][bookmark: _Toc463704870]

[bookmark: Heading104]
 EXP

Description: Returns e raised to the nth power,
where e =
2.71828183[el].[bookmark: _Toc394808379][bookmark: _Toc463693653][bookmark: _Toc463695584][bookmark: _Toc463704871]

[bookmark: Heading105]
 EXP Syntax

EXP(nth_power)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808380][bookmark: _Toc463693654][bookmark: _Toc463695585][bookmark: _Toc463704872]

[bookmark: Heading106]
 EXP Example

SELECT EXP(0),EXP(1),EXP(-.55),COSH(-3),COSH(10/5) from DUAL;

EXP(0) EXP(1) EXP(-.55) COSH(-3) COSH(10/5)
--------- --------- --------- --------- ----------
 1 2.7182818 .57694981 10.067662 3.7621957 [bookmark: _Toc394808381][bookmark: _Toc463693655][bookmark: _Toc463695586][bookmark: _Toc463704873]

[bookmark: Heading107]
 FLOOR

Description: Returns the value representing the largest integer
that is less than or equal to
input_number.[bookmark: _Toc394808382][bookmark: _Toc463693656][bookmark: _Toc463695587][bookmark: _Toc463704874]

[bookmark: Heading108]
 FLOOR Syntax

FLOOR(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808383][bookmark: _Toc463693657][bookmark: _Toc463695588][bookmark: _Toc463704875]

[bookmark: Heading109]
 FLOOR Example

SELECT FLOOR(9),FLOOR(9.6),FLOOR(-12),FLOOR(-12.3) from DUAL;

FLOOR(9) FLOOR(9.6) FLOOR(-12) FLOOR(-12.3)
--------- ---------- ---------- ------------
 9 9 -12 -13 [bookmark: _Toc394808384][bookmark: _Toc463693658][bookmark: _Toc463695589][bookmark: _Toc463704876]

[bookmark: Heading110]
 LN

Description: Returns the natural logarithm of
input_number, which is greater than
0.[bookmark: _Toc394808385][bookmark: _Toc463693659][bookmark: _Toc463695590][bookmark: _Toc463704877]

[bookmark: Heading111]
 LN Syntax

LN(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808386][bookmark: _Toc463693660][bookmark: _Toc463695591][bookmark: _Toc463704878]

[bookmark: Heading112]
 LN Example

SELECT LN(9),LN(0.22),LN(1) from DUAL;

LN(9) LN(0.22) LN(1)
--------- --------- ---------
2.1972246 -1.514128 0 [bookmark: _Toc394808387][bookmark: _Toc463693661][bookmark: _Toc463695592][bookmark: _Toc463704879]

[bookmark: Heading113]
 LOG

Description: Returns the logarithm of input_number,
calculated on input_base. The base must be a positive value
greater than 1, and input_number must be a positive number
greater than
0.[bookmark: _Toc394808388][bookmark: _Toc463693662][bookmark: _Toc463695593][bookmark: _Toc463704880]

[bookmark: Heading114]
 LOG Syntax

LOG(input_base, input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808389][bookmark: _Toc463693663][bookmark: _Toc463695594][bookmark: _Toc463704881]

[bookmark: Heading115]
 LOG Example

SELECT LOG(10,5),LOG(10,0.33),LOG(10,2),LOG(16,2),LOG(2,2) from DUAL;

LOG(10,5) LOG(10,0.33) LOG(10,2) LOG(16,2) LOG(2,2)
--------- ------------ --------- --------- ---------
 .69897 -.4814861 .30103 .25 1 [bookmark: _Toc394808390][bookmark: _Toc463693664][bookmark: _Toc463695595][bookmark: _Toc463704882]

[bookmark: Heading116]
 MOD

Description: Returns the remainder of input_x
divided by input_y. The function returns 0 if there is no
remainder. MOD is useful to write a function to see if a number is a
prime number, or to write a function to determine the divisors of a
number.[bookmark: _Toc394808391][bookmark: _Toc463693665][bookmark: _Toc463695596][bookmark: _Toc463704883]

[bookmark: Heading117]
 MOD Syntax

MOD(input_x,input_y)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808392][bookmark: _Toc463693666][bookmark: _Toc463695597][bookmark: _Toc463704884]

[bookmark: Heading118]
 MOD Example

SELECT MOD(9,3),MOD(9,2),MOD(-3,4) from DUAL;

MOD(9,3) MOD(9,2) MOD(-3,4)
--------- --------- ---------
 0 1 -3

Just a Minute -
This function operates differently than the classic version of MOD
only when using negative numbers. To see the difference and how to use the
classic MOD, execute the examples that
follow.[bookmark: _Toc394808393][bookmark: _Toc463693667][bookmark: _Toc463695598][bookmark: _Toc463704885]

[bookmark: Heading119]
 Syntax

input_x - input_y * FLOOR(input_x/input_y)[bookmark: _Toc463704886]

[bookmark: Heading120]
 Complex MOD Example

SELECT MOD(-3,4) "Oracle MOD", -3 - 4*FLOOR(-3/4) from DUAL;

Oracle MOD -3-4*FLOOR(-3/4)
---------- ----------------
 -3 1

Just a Minute -
Do not put parentheses around input_x - input_y,
or you get a wrong
answer![bookmark: _Toc394808395][bookmark: _Toc463693669][bookmark: _Toc463695600][bookmark: _Toc463704887]

[bookmark: Heading121]
 POWER

Description: Returns a number (input_x), raised to
the power of a number (input_y). input_x and
input_y can be any number, except that if input_x is
negative, input_y must be an
integer.[bookmark: _Toc394808396][bookmark: _Toc463693670][bookmark: _Toc463695601][bookmark: _Toc463704888]

[bookmark: Heading122]
 POWER Syntax

POWER(input_x,input_y)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808397][bookmark: _Toc463693671][bookmark: _Toc463695602][bookmark: _Toc463704889]

[bookmark: Heading123]
 POWER Example

SELECT POWER(2,3),POWER(9,1.2),POWER(-3,4) from DUAL;

POWER(2,3) POWER(9,1.2) POWER(-3,4)
---------- ------------ -----------
 8 13.96661 81 [bookmark: _Toc394808398][bookmark: _Toc463693672][bookmark: _Toc463695603][bookmark: _Toc463704890]

[bookmark: Heading124]
 ROUND

Description: Rounds the input_x number to the number
of places specified. If the number of places specified is positive, it rounds to
the right of the decimal. If the number of places specified is negative, it
rounds to the left of the decimal. If no places are specified, the default is
0, which rounds to the nearest
integer.[bookmark: _Toc394808399][bookmark: _Toc463693673][bookmark: _Toc463695604][bookmark: _Toc463704891]

[bookmark: Heading125]
 ROUND Syntax

ROUND(input_x,<places_to_round>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808400][bookmark: _Toc463693674][bookmark: _Toc463695605][bookmark: _Toc463704892]

[bookmark: Heading126]
 ROUND Example

SELECT ROUND(99.26723), ROUND(99.26723,-1), ROUND(99.26723,2),
 ROUND(99.26723,4)
 from DUAL;

ROUND(99.26723) ROUND(99.26723,-1) ROUND(99.26723,2) ROUND(99.26723,4)
--------------- ------------------ ----------------- -----------------
 99 100 99.27 99.2672 [bookmark: _Toc394808401][bookmark: _Toc463693675][bookmark: _Toc463695606][bookmark: _Toc463704893]

[bookmark: Heading127]
 SIGN

Description: Used to check the sign of a number. The rules of the
function are as follows:

			 	If the number is negative, the value -1 is
returned.

			 	If the number is zero, the value 0 is
returned.

			 	If the number is positive, the value 1 is
returned.

Time Saver -
You could easily test whether a number is positive with an IF
statement, such as IF (SIGN(x)) THEN..., or continuously loop until a
0 or negative number is
entered.[bookmark: _Toc394808402][bookmark: _Toc463693676][bookmark: _Toc463695607][bookmark: _Toc463704894]

[bookmark: Heading128]
 SIGN Syntax

SIGN(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808403][bookmark: _Toc463693677][bookmark: _Toc463695608][bookmark: _Toc463704895]

[bookmark: Heading129]
 SIGN Example

SELECT SIGN(-44.54),SIGN(0),SIGN(9.22) from DUAL;

SIGN(-44.54) SIGN(0) SIGN(9.22)
------------ --------- ----------
 -1 0 1 [bookmark: _Toc394808404][bookmark: _Toc463693678][bookmark: _Toc463695609][bookmark: _Toc463704896]

[bookmark: Heading130]
 SIN

Description: Returns the sine of any number, which is passed as an
angle in radians to the function.
[bookmark: _Toc394808405][bookmark: _Toc463693679][bookmark: _Toc463695610][bookmark: _Toc463704897]

[bookmark: Heading131]
 SIN Syntax

SIN(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808406][bookmark: _Toc463693680][bookmark: _Toc463695611][bookmark: _Toc463704898]

[bookmark: Heading132]
 SIN Example

SELECT SIN(0), SIN(-30),SIN(180),SIN(-265),SIN(360) from DUAL;

SIN(0) SIN(-30) SIN(180) SIN(-265) SIN(360)
--------- --------- --------- --------- ---------
 0 .98803162 -.8011526 -.8940102 .95891572 [bookmark: _Toc394808407][bookmark: _Toc463693681][bookmark: _Toc463695612][bookmark: _Toc463704899]

[bookmark: Heading133]
 SINH

Description: Returns the hyperbolic sine of any number passed to
the
function.[bookmark: _Toc394808408][bookmark: _Toc463693682][bookmark: _Toc463695613][bookmark: _Toc463704900]

[bookmark: Heading134]
 SINH Syntax

SINH(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808409][bookmark: _Toc463693683][bookmark: _Toc463695614][bookmark: _Toc463704901]

[bookmark: Heading135]
 SINH Example

SELECT SINH(0), SINH(-30),SINH(180),SINH(-265),SINH(360/22.3) from DUAL;

SINH(0) SINH(-30) SINH(180) SINH(-265) SINH(360/22.3)
--------- --------- --------- ---------- --------------
 0 -5.34E+12 7.447E+77 -6.1E+114 5128637.4 [bookmark: _Toc394808410][bookmark: _Toc463693684][bookmark: _Toc463695615][bookmark: _Toc463704902]

[bookmark: Heading136]
 SQRT

Description: Returns the square root of
input_number, which can't be negative, so imaginary numbers
are out of the
question.[bookmark: _Toc394808411][bookmark: _Toc463693685][bookmark: _Toc463695616][bookmark: _Toc463704903]

[bookmark: Heading137]
 SQRT Syntax

SQRT(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808412][bookmark: _Toc463693686][bookmark: _Toc463695617][bookmark: _Toc463704904]

[bookmark: Heading138]
 SQRT Example

SELECT SQRT(9),SQRT(1.22),SQRT(25) from DUAL;

SQRT(9) SQRT(1.22) SQRT(25)
--------- ---------- ---------
 3 1.1045361 5 [bookmark: _Toc394808413][bookmark: _Toc463693687][bookmark: _Toc463695618][bookmark: _Toc463704905]

[bookmark: Heading139]
 TAN

Description: Returns the tangent of any number, which is passed as
an angle in radians, to the
function.[bookmark: _Toc394808414][bookmark: _Toc463693688][bookmark: _Toc463695619][bookmark: _Toc463704906]

[bookmark: Heading140]
 TAN Syntax

TAN(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808415][bookmark: _Toc463693689][bookmark: _Toc463695620][bookmark: _Toc463704907]

[bookmark: Heading141]
 TAN Example

SELECT TAN(0), TAN(-30),TAN(180),TAN(-265),TAN(360) from DUAL;

TAN(0) TAN(-30) TAN(180) TAN(-265) TAN(360)
--------- --------- --------- --------- ---------
 0 6.4053312 1.3386902 -1.995351 -3.38014 [bookmark: _Toc394808416][bookmark: _Toc463693690][bookmark: _Toc463695621][bookmark: _Toc463704908]

[bookmark: Heading142]
 TANH

Description: Returns the hyperbolic tangent of any number passed
to the
function.[bookmark: _Toc394808417][bookmark: _Toc463693691][bookmark: _Toc463695622][bookmark: _Toc463704909]

[bookmark: Heading143]
 TANH Syntax

TANH(input_number)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808418][bookmark: _Toc463693692][bookmark: _Toc463695623][bookmark: _Toc463704910]

[bookmark: Heading144]
 TANH Example

SELECT TANH(0), TANH(-30),TANH(180),TANH(-265),TANH(360/22.3) from DUAL;

TANH(0) TANH(-30) TANH(180) TANH(-265) TANH(360/22.3)
--------- --------- --------- ---------- --------------
 0 -1 1 -1 1 [bookmark: _Toc394808419][bookmark: _Toc463693693][bookmark: _Toc463695624][bookmark: _Toc463704911]

[bookmark: Heading145]
 TRUNC

Description: Truncates the input_x number to the
number of places specified. If the number of places specified is positive, it
truncates to the right of the decimal. If the number of places specified is
negative, it truncates to the left of the decimal. If no places are specified,
the default is 0, which truncates to the
integer.[bookmark: _Toc394808420][bookmark: _Toc463693694][bookmark: _Toc463695625][bookmark: _Toc463704912]

[bookmark: Heading146]
 TRUNC Syntax

TRUNC(input_x,<places_to_truncate>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808421][bookmark: _Toc463693695][bookmark: _Toc463695626][bookmark: _Toc463704913]

[bookmark: Heading147]
 TRUNC Example

SELECT TRUNC(99.26723), TRUNC(99.26723,-1), TRUNC(99.26723,2),
 TRUNC(99.26723,4)
 from DUAL;

TRUNC(99.26723) TRUNC(99.26723,-1) TRUNC(99.26723,2) TRUNC(99.26723,4)
--------------- ------------------ ----------------- -----------------
 99 90 99.26 99.2672 [bookmark: _Toc394808422][bookmark: _Toc463693696][bookmark: _Toc463695627][bookmark: _Toc463704914]

[bookmark: Heading148]
 DATE Functions

The DATE datatypes can be controlled by the functions described in
the following sections. You can perform almost any type of computation on both
date and
time.[bookmark: _Toc394808423][bookmark: _Toc463693697][bookmark: _Toc463695628][bookmark: _Toc463704915]

[bookmark: Heading149]
 ADD_MONTHS

Description: This function adds or subtracts months from a date.
Because the function is overloaded, you can specify the parameters in any order.
If month_to_add is positive, it adds months into the future. If
months_to_add is negative, it subtracts months from
date_passed. You can specify months_to_add as a
fraction, but Oracle completely ignores the fraction. You can go down to the day
level by using other Oracle functions.

Another caution is that
Oracle returns the same day in the resulting calculation unless the last day in
one month (for example March 31) is greater than the last day of the resulting
month (for example April 30). Your result would not be April 31 or even May 1,
but the actual last day of the month, which in this case is April 30. Again, if
you are really concerned about not adding exactly 31 days, you can use other
Oracle functions to achieve your
goal.[bookmark: _Toc394808424][bookmark: _Toc463693698][bookmark: _Toc463695629][bookmark: _Toc463704916]

[bookmark: Heading150]
 ADD_MONTHS Syntax

The syntax can be expressed in two ways:

ADD_MONTHS(date_passed,months_to_add)

or

ADD_MONTHS(months_to_add, date_passed)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808425][bookmark: _Toc463693699][bookmark: _Toc463695630][bookmark: _Toc463704917]

[bookmark: Heading151]
 ADD_MONTHS Examples

Both of the following statements produce the same result:

SELECT ADD_MONTHS(SYSDATE,2) from Dual;
SELECT ADD_MONTHS(SYSDATE,2.654) from Dual;

Output: (assuming the date is 06/02/99)
ADD_MONTH

02-AUG-99 [bookmark: _Toc394808426][bookmark: _Toc463693700][bookmark: _Toc463695631][bookmark: _Toc463704918]

[bookmark: Heading152]
 LAST_DAY

Description: Provides the last day of the given month. A useful
purpose would be to determine how many days are left in a month.
[bookmark: _Toc394808427][bookmark: _Toc463693701][bookmark: _Toc463695632][bookmark: _Toc463704919]

[bookmark: Heading153]
 LAST_DAY Syntax

LAST_DAY(input_date_passed)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808428][bookmark: _Toc463693702][bookmark: _Toc463695633][bookmark: _Toc463704920]

[bookmark: Heading154]
 LAST_DAY Examples

SELECT TO_CHAR(LAST_DAY('30-JUN-99'),
'MM/DD/YYYY HH:MM:SS AM') "Last_Day"
 from DUAL;

Last_Day

06/30/1999 12:06:00 AM

Calculating the Days of Summer in June

SELECT LAST_DAY('20-JUN-99') "Last_Day",
 LAST_DAY('20-JUN-99') - TO_DATE('20-JUN-99') "Days_Summer"
 from DUAL;

Last_Day Days_Summer
--------- -----------
30-JUN-99 10 [bookmark: _Toc394808429][bookmark: _Toc463693703][bookmark: _Toc463695634][bookmark: _Toc463704921]

[bookmark: Heading155]
 MONTHS_BETWEEN

Description: Returns the number of months between two given dates.
If the day is the same in both months, an integer value is returned. If the day
is different, a fractional result based on a 31-day month is returned. If the
second date is earlier than to the first date, the result is
negative.[bookmark: _Toc394808430][bookmark: _Toc463693704][bookmark: _Toc463695635][bookmark: _Toc463704922]

[bookmark: Heading156]
 MONTHS_BETWEEN Syntax

MONTHS_BETWEEN(input_date1,input_date2)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808431][bookmark: _Toc463693705][bookmark: _Toc463695636][bookmark: _Toc463704923]

[bookmark: Heading157]
 MONTHS_BETWEEN Examples

SELECT MONTHS_BETWEEN('25-DEC-99','02-JUN-99') "Fractional",
 MONTHS_BETWEEN('02-FEB-99','02-JUN-99') "Integer"
 from DUAL;

Fractional Integer
---------- ---------
 6.7419355 -4 [bookmark: _Toc394808432][bookmark: _Toc463693706][bookmark: _Toc463695637][bookmark: _Toc463704924]

[bookmark: Heading158]
 NEW_TIME

Description: Enables you to find out the time in a time zone by
simply passing the date and time of the first zone, and specifying the second
zone. Have you ever wondered what time it was in Germany? Would your phone call
wake the person up in the middle of the night? Table B.1 lists the valid time
zones you can use with
NEW_TIME.[bookmark: _Toc394808433][bookmark: _Toc463693707][bookmark: _Toc463695638]

Table B.1[em]Time Zones to Use with NEW_TIME

[bookmark: _Toc463704925]

		
Time Zone Abbreviation

		
Time Zone Description

		
AST

		
Atlantic Standard Time

		
ADT

		
Atlantic Daylight Saving Time

		
BST

		
Bering Standard Time

		
BDT

		
Bering Daylight Saving Time

		
CST

		
Central Standard Time

		
CDT

		
Central Daylight Saving Time

		
EST

		
Eastern Standard Time

		
EDT

		
Eastern Daylight Saving Time

		
GMT

		
Greenwich Mean Time (Date Line!)

		
HST

		
Alaska-Hawaii Standard Time

		
HDT

		
Alaska-Hawaii Daylight Saving Time

		
MST

		
Mountain Standard Time

		
MDT

		
Mountain Daylight Saving Time

		
NST

		
Newfoundland Standard Time

		
PST

		
Pacific Standard Time

		
PDT

		
Pacific Daylight Saving Time

		
YST

		
Yukon Standard Time

		
YDT

		
Yukon Daylight Saving Time

[bookmark: Heading159]
 NEW_TIME Syntax

NEW_TIME(input_date and time,time_zone1,time_zone2)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808434][bookmark: _Toc463693708][bookmark: _Toc463695639][bookmark: _Toc463704926]

[bookmark: Heading160]
 NEW_TIME Examples

SELECT TO_CHAR(NEW_TIME(TO_DATE('060299 01:00:00 AM',
 'MMDDYY HH:MI:SS AM'),
 'CDT','PDT'), 'DD-MON-YY HH:MI:SS AM') "Central to Pacific"
 from DUAL;

Central to Pacific

01-JUN-99 11:00:00 PM

Time Saver -
Remember that minutes are expressed as MI, not MM. People
commonly make the mistake of using MM where they mean MI.

[bookmark: Heading161]
[bookmark: _Toc394808435][bookmark: _Toc463693709][bookmark: _Toc463695640][bookmark: _Toc463704927]
NEXT_DAY

Description: Returns the next date in the week for the day of the
week specified after the input date. The time returned is the time specified by
the input date when
called.[bookmark: _Toc394808436][bookmark: _Toc463693710][bookmark: _Toc463695641][bookmark: _Toc463704928]

[bookmark: Heading162]
 NEXT_DAY Syntax

NEXT_DAY(input_date_passed,day_name)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808437][bookmark: _Toc463693711][bookmark: _Toc463695642][bookmark: _Toc463704929]

[bookmark: Heading163]
 NEXT_DAY Examples

SELECT TO_CHAR(NEXT_DAY(SYSDATE,'Monday'),'MM/DD/YYYY HH:MM:SS AM')
 "Next_Day"
 from DUAL;

Output for the SYSDATE of June 3rd, 1999:
Next_Day

06/09/1999 07:06:38 AM

SELECT TO_CHAR(NEXT_DAY('31-AUG-99','Monday'),'MM/DD/YYYY HH:MM:SS AM')
 "Next_Day"
 from DUAL;

Next_Day

09/06/1999 12:00:00 AM [bookmark: _Toc394808438][bookmark: _Toc463693712][bookmark: _Toc463695643][bookmark: _Toc463704930]

[bookmark: Heading164]
 ROUND

Description: Similar to the TRUNC function. ROUND
uses the same format mask as the TRUNC function. (The format masks appear
in Table B.2.) This function allows you to round up or down based on the format
mask. The default mask when specifying a DATE value is DD. Some
useful purposes for this function are rounding to the nearest minute for billing
cellular phone[nd]based calls and rounding to the closest month to determine a
pay
period.[bookmark: _Toc394808439][bookmark: _Toc463693713][bookmark: _Toc463695644]

Table B.2[em]Format Masks for Rounding and Truncating with
Dates

[bookmark: _Toc463704931]

		
Mask Options

		
Method of Rounding or Truncating Used

		
CC, SCC

		
Rounds or truncates to the century

		
YYYY, SYYYY, YEAR,

		
Truncates to the year, or rounds up to

		
SYEAR, YYY, YY, Y

		
the next year after July 1

		
IYYY, IYY, IY, I

		
ISO year

		
Q

		
Truncates to the quarter or rounds up to the nearest quarter on or after
the 16th day of the second month of the quarter

		
MM, MON, MONTH, RM

		
Truncates the month or rounds up to the next month on or after the 16th
day

		
DD, DDD, J

		
Truncates or rounds to the day

		
WW

		
Same day of the week as the first day of the year

		
IW

		
Same day of the week as the first day of the ISO year

		
W

		
Same day of the week as the first day of the month

		
Day, Dy, D

		
Truncates or rounds to the first day of the week

		
HH24, HH12, HH

		
Truncates to the hour, or rounds up to the next hour on or after 30
minutes

		
MI

		
Truncates to the minute or rounds up to the next minute on or after 30
seconds

[bookmark: Heading165]
 ROUND Syntax

ROUND(input_date and time or number,rounding_specification)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808440][bookmark: _Toc463693714][bookmark: _Toc463695645][bookmark: _Toc463704932]

[bookmark: Heading166]
 ROUND Examples

SELECT TO_CHAR(ROUND(TO_DATE('060299 01:00:35 AM',
 'MMDDYY HH:MI:SS AM'),
 'MI'), 'DD-MON-YY HH:MI:SS AM') "Rounded to nearest Minute"
 from DUAL;

Rounded to nearest Minute

02-JUN-99 01:01:00 AM 10

[bookmark: Heading167]
[bookmark: _Toc394808441][bookmark: _Toc463693715][bookmark: _Toc463695646][bookmark: _Toc463704933]
SYSDATE

Description: Returns the current date and time in the Oracle
server. Note the distinction that the server's, not the client's, date
and time are
returned.[bookmark: _Toc394808442][bookmark: _Toc463693716][bookmark: _Toc463695647][bookmark: _Toc463704934]

[bookmark: Heading168]
 SYSDATE Syntax

SYSDATE

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808443][bookmark: _Toc463693717][bookmark: _Toc463695648][bookmark: _Toc463704935]

[bookmark: Heading169]
 SYSDATE Examples

SELECT SYSDATE from DUAL;

SYSDATE

03-OCT-99

SELECT TO_CHAR(SYSDATE,'MM/DD/YYYY HH:MM:SS AM')
 "Today's Date and Time" from DUAL;

Today's Date and Time

10/03/1999 11:06:21 PM [bookmark: _Toc394808444][bookmark: _Toc463693718][bookmark: _Toc463695649][bookmark: _Toc463704936]

[bookmark: Heading170]
 TRUNC

Description: Returns a truncated DATE or TIME to a
specified mask. For instance, you can truncate to the nearest day, month,
quarter, century, and so on. The main use of TRUNC is to simply eliminate
the time from the SYSDATE by setting all time values for all dates to
12:00 a.m. Refer to Table B.2 for the format masks to truncate dates and
times.[bookmark: _Toc394808445][bookmark: _Toc463693719][bookmark: _Toc463695650][bookmark: _Toc463704937]

[bookmark: Heading171]
 TRUNC Syntax

TRUNC(date_passed,truncate mask)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808446][bookmark: _Toc463693720][bookmark: _Toc463695651][bookmark: _Toc463704938]

[bookmark: Heading172]
 TRUNC Example

Just a Minute -
This example removes the time from the date.

SELECT TO_CHAR(TRUNC(SYSDATE),'MM/DD/YYYY HH:MM:SS AM')
 "Today's Date and Time"
 from DUAL;

Today's Date and Time

06/01/1999 12:10:00 AM [bookmark: _Toc394808447][bookmark: _Toc463693721][bookmark: _Toc463695652][bookmark: _Toc463704939]

[bookmark: Heading173]
 Conversion Functions

Oracle provides several functions for converting datatypes, character
sets, and
tables.[bookmark: _Toc394808448][bookmark: _Toc463693722][bookmark: _Toc463695653][bookmark: _Toc463704940]

[bookmark: Heading174]
 CHARTOROWID

Description: Converts CHAR or VARCHAR2 from the
external format provided by Oracle to its internal binary
format.[bookmark: _Toc394808449][bookmark: _Toc463693723][bookmark: _Toc463695654][bookmark: _Toc463704941]

[bookmark: Heading175]
 CHARTOROWID Syntax

CHARTOROWID(string_row_format)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808450][bookmark: _Toc463693724][bookmark: _Toc463695655][bookmark: _Toc463704942]

[bookmark: Heading176]
 CHARTOROWID Example

SELECT name FROM employee
 WHERE ROWID = CHARTOROWID('0000001C.0001.0002');

Name:

Atwood [bookmark: _Toc394808451][bookmark: _Toc463693725][bookmark: _Toc463695656][bookmark: _Toc463704943]

[bookmark: Heading177]
 CONVERT

Description: Used to convert from one character set to another
character set. The source character set is optional, and if not specified,
defaults to the standard character set used by the database. Table B.3 lists
valid character
sets.[bookmark: _Toc394808452][bookmark: _Toc463693726][bookmark: _Toc463695657]

Table B.3[em]Character Sets for the CONVERT Function

[bookmark: _Toc463704944]

		
Character Set

		
Description

		
US7ASCII

		
U.S. ASCII 7-bit character set

		
WE8DEC

		
DEC Western Europe 8-bit character set

		
WE8HP

		
Hewlett-Packard Western Europe 8-bit character set

		
F7DEC

		
DEC French 7-bit character set

		
WEBCDIC500

		
IBM Western Europe EBCDIC character set

		
WEPC850

		
Western Europe PC character set

		
WE8ISO8895P1

		
Western Europe ISO 8895-1 character set

[bookmark: Heading178]
 CONVERT Syntax

CONVERT(input_string,destination_character_set,<source_character_set>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808453][bookmark: _Toc463693727][bookmark: _Toc463695658][bookmark: _Toc463704945]

[bookmark: Heading179]
 CONVERT Example

Just a Minute -
The default is IBM PC ASCII for the following examples.

SELECT CONVERT('This was ASCII, now EBCDIC','WE8EBCDIC500','WE8PC850')
 from DUAL;

CONVERT('THISWASASCII,NOWE

ãˆ 0¢@__¢@ÁâÃÉÉk@-_@ÅÂÃÄÉÃ

You should expect weird characters to be output because EBCDIC uses a
whole different decimal numbering scheme than ASCII.

[bookmark: Heading180]
[bookmark: _Toc394808454][bookmark: _Toc463693728][bookmark: _Toc463695659][bookmark: _Toc463704946]
HEXTORAW

Description: Converts hex string values to internal RAW
values. The hex values must be 2 bytes for each
character.[bookmark: _Toc394808455][bookmark: _Toc463693729][bookmark: _Toc463695660][bookmark: _Toc463704947]

[bookmark: Heading181]
 HEXTORAW Syntax

HEXTORAW(input_string,destination_character_set,<source_character_set>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808456][bookmark: _Toc463693730][bookmark: _Toc463695661][bookmark: _Toc463704948]

[bookmark: Heading182]
 HEXTORAW Example

SELECT HEXTORAW('1a2b1c') from DUAL;

HEXTOR

1A2B1C [bookmark: _Toc394808457][bookmark: _Toc463693731][bookmark: _Toc463695662][bookmark: _Toc463704949]

[bookmark: Heading183]
 RAWTOHEX

Description: Converts an internal RAW number to a string of
characters in hexadecimal
format.[bookmark: _Toc394808458][bookmark: _Toc463693732][bookmark: _Toc463695663][bookmark: _Toc463704950]

[bookmark: Heading184]
 RAWTOHEX Syntax

RAWTOHEX(raw_value)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808459][bookmark: _Toc463693733][bookmark: _Toc463695664][bookmark: _Toc463704951]

[bookmark: Heading185]
 RAWTOHEX Example

SELECT RAWTOHEX('1a2b1c') from DUAL;

RAWTOHEX('1A

316132623163 [bookmark: _Toc394808460][bookmark: _Toc463693734][bookmark: _Toc463695665][bookmark: _Toc463704952]

[bookmark: Heading186]
 ROWIDTOCHAR

Description: Converts row_id into its external
18-character string format.
[bookmark: _Toc394808461][bookmark: _Toc463693735][bookmark: _Toc463695666][bookmark: _Toc463704953]

[bookmark: Heading187]
 ROWIDTOCHAR Syntax

ROWIDTOCHAR(row_id)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808462][bookmark: _Toc463693736][bookmark: _Toc463695667][bookmark: _Toc463704954]

[bookmark: Heading188]
 ROWIDTOCHAR Example

SELECT ROWIDTOCHAR(ROWID) from DUAL;

ROWIDTOCHAR(ROWID)

00000342.0000.0001

Just a Minute -
Remember that the DUAL table has only one row and is used for dummy
data and queries.
[bookmark: _Toc394808463][bookmark: _Toc463693737][bookmark: _Toc463695668][bookmark: _Toc463704955]

[bookmark: Heading189]
 TO_CHAR (with Dates)

Description: Converts an Oracle DATE value into a
VARCHAR2 character string, thus allowing you to format the date in any
way imaginable. The format masks are shown in Table B.4. The NLS parameters
enable you to specify the language to output to the screen by using
NLS_DATE_LANGUAGE =
'language_desired'.[bookmark: _Toc394808464][bookmark: _Toc463693738][bookmark: _Toc463695669]

Table B.4[em]DATE Format Masks

[bookmark: _Toc463704956]

		
Format Element

		
Description

		
BC, B.C.

		
BC indicator, which can be used with or without the periods.

		
AD, A.D.

		
AD indicator, which can be used with or without the periods.

		
CC, SCC

		
Century code. Returns a negative value if using BC with SCC
format.

		
SYYYY, YYYY

		
Four-digit year. Returns a negative value if using BC with
SYYYY format.

		
IYYY

		
Four-digit ISO year.

		
Y,YYY

		
Four-digit year with a comma inserted.

		
YYY, YY, Y

		
The last three, two, or one digits of the year. The default is the
current century.

		
IYY, IY, I

		
The last three, two, or one digits of the ISO year. The default is the
current century.

		
YEAR, SYEAR

		
Returns the year, spelled out. SYEAR returns a negative value if
using BC dates.

		
RR

		
The last two digits of the year in prior or future centuries.

		
Q

		
Quarter of the year, values 1 to 4.

		
MM

		
The month number from 01 to 12, where January = 01,
February = 02, and so on.

		
MONTH

		
The month name always allocated to nine characters, right-padded with
blanks.

		
MON

		
The month name abbreviated to three characters.

		
RM

		
The Roman numeral representation of the month, with values I to
XII.

		
WW

		
The week in the year, with values 1 to 53.

		
IW

		
The ISO week in the year, with values 1 to 52 or 1
to 53.

		
W

		
The week in the month, with values 1 to 5. Week 1 begins on
the first day of the month.

		
D

		
The day of the week, with values 1 to 7.

		
DD

		
The day of the month, with values 1 to 31.

		
DDD

		
The day of the year, with values 1 to 366.

		
DAY

		
The name of the day spelled out, always occupying nine characters, and
right-padded with spaces.

		
DY

		
The name of the day abbreviated to two characters.

		
J

		
Julian days counted since January 1, 4712 B.C.

		
HH, HH12

		
The hour of the day, with values 1 to 12.

		
HH24

		
The hour of the day, with values 0 to 23.

		
MI

		
The minute of the hour, with values 0 to 59.

		
SS

		
The second of the minute, with values 0 to 59.

		
SSSS

		
Number of seconds past midnight, with values 0 to 86399 (60
minutes/hour[ts]60 seconds/minute[ts]24 hours = 86400 seconds).

		
AM, A.M.

		
The ante meridiem indicator for morning, with or without the
periods.

		
PM, P.M.

		
The post meridiem indicator for evening, with or without the
periods.

		
Punctuation

		
All punctuation passed through to maximum of 220 characters.

		
Text

		
All text passed through to a maximum of 220 characters.

		
TH

		
The suffix to convert numbers to ordinal format, with 1 1st,
2 2nd, and so on. Always returns the value in English only.

		
SP

		
Converts a number to its spelled-out format, so for example, 109
becomes one hundred nine. Always returns a value in English
only.

		
SPTH

		
Spells out numbers converted to ordinal format, so 1 would be
FIRST, 2 would be SECOND, and so on. Always returns value in
English language only.

		
FX

		
Uses exact pattern matching between data element and the format.

		
FM

		
Fill mode: Toggles suppression of blanks in output from conversion.

[bookmark: Heading190]
 TO_CHAR (with Dates) Syntax

TO_CHAR(Date_Value,format_mask,<NLS_Parameters>

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808465][bookmark: _Toc463693739][bookmark: _Toc463695670][bookmark: _Toc463704957]

[bookmark: Heading191]
 TO_CHAR (with Dates) Examples

SELECT TO_CHAR(SYSDATE,'MONTH DDTH YYYY') "Today" from DUAL;

Today

JUNE 03RD 1999

SET SERVEROUTPUT ON

DECLARE
 v_Convert_Date DATE := TO_DATE('06112067BC','MMDDYYYYBC');
 v_Hold_Date VARCHAR2(100);
BEGIN
 v_Hold_Date := TO_CHAR(v_Convert_Date,'MMDDSYYYY');
 DBMS_OUTPUT.PUT_LINE('The converted date is: ' || v_Hold_Date);
END;
/

The converted date is: 0611-2067

SELECT TO_CHAR(SYSDATE,'MONTH DD YY','NLS_DATE_LANGUAGE=german')
 "German Date" from DUAL;

German Date

JUNI 04 99 [bookmark: _Toc394808466][bookmark: _Toc463693740][bookmark: _Toc463695671][bookmark: _Toc463704958]

[bookmark: Heading192]
 TO_CHAR (with Labels)

Description: Converts a MLSLABEL label to a VARCHAR2
character string. This function is relevant only when using Trusted Oracle. If
no format is specified, the default label format is
used.[bookmark: _Toc394808467][bookmark: _Toc463693741][bookmark: _Toc463695672][bookmark: _Toc463704959]

[bookmark: Heading193]
 TO_CHAR (with Labels) Syntax

TO_CHAR(label,<format_mask>

Where Used: PL/SQL and SQL statements in a Trusted Oracle
database[bookmark: _Toc394808468][bookmark: _Toc463693742][bookmark: _Toc463695673][bookmark: _Toc463704960]

[bookmark: Heading194]
 TO_CHAR (with Labels) Examples

See the Trusted Oracle7 Server Administrator's Guide for many
examples and more in-depth explanation.
[bookmark: _Toc394808469][bookmark: _Toc463693743][bookmark: _Toc463695674][bookmark: _Toc463704961]

[bookmark: Heading195]
 TO_CHAR (with Numbers)

Description: Converts any number into a VARCHAR2 character
string. Again, this allows you to improve on your output of NUMBER data.
You can format this in many ways; see Table B.5 in the section
"TO_NUMBER" for the applicable format masks.

The
available NLS parameters are

			 	NLS_NUMERIC_CHARACTERS[md]Specifies characters to use for
group separators and the decimal point.

			 	NLS_CURRENCY[md]Specifies the local currency.

			 	NLS_ISO_CURRENCY[md]Specifies the character(s) to represent
the ISO currency symbol.
[bookmark: _Toc394808470][bookmark: _Toc463693744][bookmark: _Toc463695675][bookmark: _Toc463704962]

[bookmark: Heading196]
 TO_CHAR (with Numbers) Syntax

TO_CHAR(number,format mask,NLS_Parameters)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808471][bookmark: _Toc463693745][bookmark: _Toc463695676][bookmark: _Toc463704963]

[bookmark: Heading197]
 TO_CHAR (with Numbers) Examples

SET SERVEROUTPUT ON

DECLARE
 v_Convert_Number NUMBER := 90210;
 v_Hold_Char VARCHAR2(21) ;
BEGIN
 v_Hold_Char := TO_CHAR(v_Convert_Number,'0000000000');
 DBMS_OUTPUT.PUT_LINE('The employee ID is: ' || v_Hold_Char);
END;
/

The employee ID is: 0000090210 [bookmark: _Toc394808472][bookmark: _Toc463693746][bookmark: _Toc463695677][bookmark: _Toc463704964]

[bookmark: Heading198]
 TO_DATE

Description: Converts a character string (CHAR or
VARCHAR2), as denoted by the apostrophes (') surrounding the
character string, to an actual DATE value. The optional
NLS_DATE_LANGUAGE parameter enables you to specify the language to output
to screen.

There are some limitations to the TO_DATE
function:

			 	You can pass no more than 220 characters to the function for
conversion.

			 	You are limited to the format masks listed in Table
B.4.

			 	You can't mix and match formats (such as specifying 24-hour
time and also requesting AM or PM) because you want either 24-hour
time or 12-hour time, and not both.

			 	You can't specify the same element twice in the conversion,
such as YYYY-MM-MMM-DD, where MM-MMM contains duplicate elements.
The function has problems attempting to decode the intent and always causes an
error.[bookmark: _Toc394808473][bookmark: _Toc463693747][bookmark: _Toc463695678][bookmark: _Toc463704965]

[bookmark: Heading199]
 TO_DATE Syntax

TO_DATE(character string,format,<LS_DATE_LANGUAGE>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808474][bookmark: _Toc463693748][bookmark: _Toc463695679][bookmark: _Toc463704966]

[bookmark: Heading200]
 TO_DATE Examples

SELECT TO_DATE('100388','MMDDYY') "Birthday" from DUAL;

Birthday

03-OCT-88

SELECT TO_DATE('March 10','MONTH DD') "Sample" from DUAL;

Sample

10-MAR-99

SET SERVEROUTPUT ON

DECLARE
 v_Convert_Date DATE;
BEGIN
 v_Convert_Date := TO_DATE('092986','MMDDYY');
 DBMS_OUTPUT.PUT_LINE('The converted date is: ' || v_Convert_Date);
END;
/

The converted date is:29--SEP-86

SET SERVEROUTPUT ON

DECLARE
 v_Convert_Date DATE;
BEGIN
 v_Convert_Date := TO_DATE('061167','MMDDYY') + 10;
 DBMS_OUTPUT.PUT_LINE('The converted date is: ' || v_Convert_Date);
END;
/

Your output should appear as follows:
The converted date is: 21-JUN-67 [bookmark: _Toc463693752][bookmark: _Toc463695683][bookmark: _Toc463704970]

[bookmark: Heading201]
 TO_LOB

Description: Allows you to converts LONG or LONG RAW
values in the column long_column to LOB
values.[bookmark: _Toc463693753][bookmark: _Toc463695684][bookmark: _Toc463704971]

[bookmark: Heading202]
 TO_LOB Syntax

TO_LOB(LONG String)

Where Used: PL/SQL and SQL statements in a Trusted Oracle
database[bookmark: _Toc463693754][bookmark: _Toc463695685][bookmark: _Toc463704972]

[bookmark: Heading203]
 TO_LOB Example

INSERT INTO lob_table
 SELECT n, TO_LOB(long_col)
FROM long_table; [bookmark: _Toc394808478][bookmark: _Toc463693755][bookmark: _Toc463695686][bookmark: _Toc463704973]

[bookmark: Heading204]
 TO_MULTI_BYTE

Description: Converts a single-byte character string to its
multibyte counterpart. This function is only applicable to a database with both
single- and multibyte character
sets.[bookmark: _Toc394808479][bookmark: _Toc463693756][bookmark: _Toc463695687][bookmark: _Toc463704974]

[bookmark: Heading205]
 TO_MULTI_BYTE Syntax

TO_MULTI_BYTE(string)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc463704975]

[bookmark: Heading206]
 TO_MULTI_BYTE Example

SELECT TO_MULTI_BYTE('Now Multibyte!') from DUAL;

TO_MULTI_BYTE('

Now Multibyte! [bookmark: _Toc394808481][bookmark: _Toc463693758][bookmark: _Toc463695689][bookmark: _Toc463704976]

[bookmark: Heading207]
 TO_NUMBER

Description: Similar to the TO_DATE function, this function
converts a character string of type CHAR or VARCHAR2 into a
number, usually to perform calculations on the number. As with TO_DATE,
the format mask is very important for a proper conversion. The format masks
appear in Table B.5.

The optional NLS parameters are

			 	NLS_NUMERIC_CHARACTERS[md]Specifies characters to use for
group separators and the decimal point.

			 	NLS_CURRENCY[md]Specifies the local currency.

			 	NLS_ISO_CURRENCY[md]Specifies characters to represent the
ISO currency
symbol.[bookmark: _Toc394808482][bookmark: _Toc463693759][bookmark: _Toc463695690][bookmark: _Toc463704977]

[bookmark: Heading208]
 TO_NUMBER Syntax

TO_NUMBER(character_string,format,<NLS_Params>)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808483][bookmark: _Toc463693760][bookmark: _Toc463695691][bookmark: _Toc463704978]

[bookmark: Heading209]
 TO_NUMBER Examples

SET SERVEROUTPUT ON

DECLARE
 v_Convert_Number VARCHAR2(20) := '1999';
 v_Hold_Number NUMBER ;
BEGIN
 v_Hold_Number := TO_NUMBER(v_Convert_Number,'9999');
 DBMS_OUTPUT.PUT_LINE('The converted number is: ' || v_Hold_Number);
 DBMS_OUTPUT.PUT_LINE('The converted number plus 10 is: ' ||
 (v_Hold_Number+10));
END;
/

The converted number is: 1999
The converted number plus 10 is: 2007

SET SERVEROUTPUT ON

DECLARE
 v_Convert_Number VARCHAR2(20) := '$119,252.75';
 v_Hold_Number NUMBER ;
BEGIN
 v_Hold_Number := TO_NUMBER(v_Convert_Number,
'$999,999,999.99');
 DBMS_OUTPUT.PUT_LINE('The converted number is:
 ' || v_Hold_Number);
 DBMS_OUTPUT.PUT_LINE('Your commission at 6% is:
 ' || (v_Hold_Number*.06));
END;
/

The converted number is: 119252.75
Your commission at 6% is: 7155.165

SET SERVEROUTPUT ON

DECLARE
 v_Convert_Number VARCHAR2(20) := '33.33';
 v_Hold_Number NUMBER ;
BEGIN
 v_Hold_Number := TO_NUMBER(v_Convert_Number,'999.999999');
 DBMS_OUTPUT.PUT_LINE('The converted number is: ' || v_Hold_Number);
 DBMS_OUTPUT.PUT_LINE('Your decimal equivalent is: ' ||
 (v_Hold_Number/100));
END;
/

The converted number is: 33.33
Your decimal equivalent is: .3333

Table B.5 describes the format masks available for use with number
elements.

Table B.5[em]Format Masks for Number Elements

[bookmark: _Toc394808484][bookmark: _Toc463693761][bookmark: _Toc463695692][bookmark: _Toc463704979]

		
Format Mask

		
Example

		
Description

		
9

		
9999

		
Each nine is considered a significant digit. Any leading zeros are
treated as blanks.

		
0

		
09999 or

		
By adding the 0 as a prefix or suffix

		

		
99990

		
to the number, all leading or trailing

		

		

		
zeros are treated and displayed as zeros

		

		

		
instead of drawing a blank (pun

		

		

		
intended). Think of this display type as

		

		

		
NUMERIC values, such as 00109.

		
$

		
$9999

		
Prefix of the currency symbol printed in the first position.

		
B

		
B9999

		
Returns any portion of the integer as blanks if the integer is 0.
This overrides the leading zeros by using a 0 for the format.

		
MI

		
9999MI

		
Automatically adds a space at the end to hold either a minus sign if the
value is negative or a placeholder space if the value is positive.

		
S

		
S9999 or

		
Displays a leading or trailing sign +

		

		
9999S

		
if the value is positive, and a leading

		

		

		
or trailing sign - if the value is

		

		

		
negative.

		
PR

		
9999PR

		
If the value is negative, angle brackets (<>) are placed
around the number; if the number is positive, placeholder spaces are
used.

		
D

		
99D99

		
Decimal point location. The nines on both sides reflect the maximum
number of digits allowed.

		
G

		
9G999G999

		
Specifies a group separator such as a comma.

		
C

		
C99

		
Returns the ISO currency symbol in the specified position.

		
L

		
L9999

		
Specifies the location of the local currency symbol (such as
$).

		
,

		
9,999,999

		
Places a comma in the specified position, regardless of the group
separator.

		
.

		
99.99

		
Specifies the location of the decimal point, regardless of the decimal
separator.

		
V

		
999V99

		
Returns the number multiplied to the 10n power, where n is
the number of nines after the V.

		
EEEE

		
9.99EEEE

		
Returns the value in scientific notation.

		
RM, rm

		
RM, rm

		
Returns the value as upper- or lowercase Roman numerals.

		
FM

		
FM9,999.99

		
Fill mode: Removes leading and trailing blanks.

[bookmark: Heading210]
 TO_SINGLE_BYTE

Description: Converts all multibyte characters in a string to
their single-byte counterparts. If the database is single byte, this has no
effect and the output of this function is the same as the string passed as
input.
[bookmark: _Toc394808485][bookmark: _Toc463693762][bookmark: _Toc463695693][bookmark: _Toc463704980]

[bookmark: Heading211]
 TO_SINGLE_BYTE Syntax

TO_SINGLE_BYTE(string)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808486][bookmark: _Toc463693763][bookmark: _Toc463695694][bookmark: _Toc463704981]

[bookmark: Heading212]
 TO_SINGLE_BYTE Example

SELECT TO_SINGLE_BYTE('Now Single-Byte!') from DUAL;

TO_SINGLE_BYTE('

Now Single-Byte! [bookmark: _Toc394808487][bookmark: _Toc463693764][bookmark: _Toc463695695][bookmark: _Toc463704982]

[bookmark: Heading213]
 Grouping Functions

The grouping functions are for use by SQL only. These functions are
primarily used for computations on groups of
records.[bookmark: _Toc394808488][bookmark: _Toc463693765][bookmark: _Toc463695696][bookmark: _Toc463704983]

[bookmark: Heading214]
 AVG

Description: Calculates the average of a column's values. The
average is calculated by adding up all rows selected and dividing this result by
the number of
rows.[bookmark: _Toc394808489][bookmark: _Toc463693766][bookmark: _Toc463695697][bookmark: _Toc463704984]

[bookmark: Heading215]
 AVG Syntax

AVG(<DISTINCT or ALL>column_to_average)

The two methods to access rows are as follows:

			 	DISTINCT[md]Selects unique values from the population
selected by the query.

			 	ALL[md]Selects all rows from the population selected by the
query.

Where Used: SQL queries and GROUP BY
clauses[bookmark: _Toc394808490][bookmark: _Toc463693767][bookmark: _Toc463695698][bookmark: _Toc463704985]

[bookmark: Heading216]
 AVG Example

Just a Minute -
The example is a query against the standard Oracle sample database.

SELECT AVG(LOSAL),AVG(HISAL) from salgrade;

AVG(LOSAL) AVG(HISAL)
---------- ----------
1660.8 3519.8 [bookmark: _Toc394808491][bookmark: _Toc463693768][bookmark: _Toc463695699][bookmark: _Toc463704986]

[bookmark: Heading217]
 COUNT

Description: Counts the number of rows selected by the query. If
you pass COUNT(*), you select all rows in the
table.[bookmark: _Toc394808492][bookmark: _Toc463693769][bookmark: _Toc463695700][bookmark: _Toc463704987]

[bookmark: Heading218]
 COUNT Syntax

COUNT(<DISTINCT or ALL> column_to_count)

The two methods to access rows are as follows:

			 	DISTINCT[md]Selects unique values from the population
selected by the query.

			 	ALL[md]Selects all rows from the population selected by the
query.

Where Used: SQL queries and GROUP BY
clauses[bookmark: _Toc394808493][bookmark: _Toc463693770][bookmark: _Toc463695701][bookmark: _Toc463704988]

[bookmark: Heading219]
 COUNT Examples

Just a Minute -
The examples are queries against the standard Oracle sample
database.

SELECT COUNT(*) from EMP;

COUNT(*)

 14

SELECT deptno,count(deptno) from EMP
GROUP BY deptno;

DEPTNO COUNT(DEPTNO)
--------- -------------
 10 3
 20 5
6 [bookmark: _Toc394808494][bookmark: _Toc463693771][bookmark: _Toc463695702][bookmark: _Toc463704989]

[bookmark: Heading220]
 GLB

Description: Used in Trusted Oracle only, to locate the greatest
lower bound of a
label.[bookmark: _Toc394808495][bookmark: _Toc463693772][bookmark: _Toc463695703][bookmark: _Toc463704990]

[bookmark: Heading221]
 GLB Syntax

GLB(<DISTINCT or ALL> label)

The two methods to access rows are as follows:

			 	DISTINCT[md]Selects unique values from the population
selected by the query.

			 	ALL[md]Selects all rows from the population selected by the
query.

Where Used: SQL queries and GROUP BY clauses in
Trusted Oracle
only[bookmark: _Toc394808497][bookmark: _Toc463693774][bookmark: _Toc463695705][bookmark: _Toc463704992]

[bookmark: Heading222]
 LUB

Description: Used in Trusted Oracle only, to locate the least
upper bound of a label.
[bookmark: _Toc394808498][bookmark: _Toc463693775][bookmark: _Toc463695706][bookmark: _Toc463704993]

[bookmark: Heading223]
 LUB Syntax

LUB(<DISTINCT or ALL> label)

The two methods to access rows are as follows:

			 	DISTINCT[md]Selects unique values from the population
selected by the query.

			 	ALL[md]Selects all rows from the population selected by the
query.

Where Used: SQL queries and GROUP BY clauses in
Trusted Oracle
only[bookmark: _Toc394808500][bookmark: _Toc463693777][bookmark: _Toc463695708][bookmark: _Toc463704995]

[bookmark: Heading224]
 MAX

Description: Locates the largest value (maximum) in the
column of a population of records selected by the query. DISTINCT and
ALL always provide the same
answer.[bookmark: _Toc394808501][bookmark: _Toc463693778][bookmark: _Toc463695709][bookmark: _Toc463704996]

[bookmark: Heading225]
 MAX Syntax

MAX(<DISTINCT or ALL> column_to_search)

The two methods to access rows are as follows:

			 	DISTINCT[md]Selects unique values from the population
selected by the query.

			 	ALL[md]Selects all rows from the population selected by the
query.

Where Used: SQL queries and GROUP BY
clauses[bookmark: _Toc394808502][bookmark: _Toc463693779][bookmark: _Toc463695710][bookmark: _Toc463704997]

[bookmark: Heading226]
 MAX Example

Just a Minute -
The example is a query against the standard Oracle sample database.

SELECT MAX(SAL) from EMP;

MAX(SAL)

 5000 [bookmark: _Toc394808503][bookmark: _Toc463693780][bookmark: _Toc463695711][bookmark: _Toc463704998]

[bookmark: Heading227]
 MIN

Description: Locates the smallest value (minimum) in the
column of a population of records selected by the query. DISTINCT and
ALL always provide the same
answer.[bookmark: _Toc394808504][bookmark: _Toc463693781][bookmark: _Toc463695712][bookmark: _Toc463704999]

[bookmark: Heading228]
 MIN Syntax

MIN(<DISTINCT or ALL> column_to_search)

The two methods to access rows are as follows:

			 	DISTINCT[md]Selects unique values from the population
selected by the query.

			 	ALL[md]Selects all rows from the population selected by the
query.

Where Used: SQL queries and GROUP BY
clauses[bookmark: _Toc394808505][bookmark: _Toc463693782][bookmark: _Toc463695713][bookmark: _Toc463705000]

[bookmark: Heading229]
 MIN Example

Just a Minute -
The example is a query against the standard Oracle sample database.

SELECT MIN(SAL) from EMP;

MIN(SAL)

 800 [bookmark: _Toc394808506][bookmark: _Toc463693783][bookmark: _Toc463695714][bookmark: _Toc463705001]

[bookmark: Heading230]
 STDDEV

Description: Calculates the standard deviation of the values in a
column selected by the query, which is simply the square root of the
variance.[bookmark: _Toc394808507][bookmark: _Toc463693784][bookmark: _Toc463695715][bookmark: _Toc463705002]

[bookmark: Heading231]
 STDDEV Syntax

STDDEV(<DISTINCT or ALL> column_to_calculate_STD)

The two methods to access rows are as follows:

			 	DISTINCT[md]Selects unique values from the population
selected by the query.

			 	ALL[md]Selects all rows from the population selected by the
query.

Where Used: SQL queries and GROUP BY
clauses[bookmark: _Toc394808508][bookmark: _Toc463693785][bookmark: _Toc463695716][bookmark: _Toc463705003]

[bookmark: Heading232]
 STDDEV Example

Just a Minute -
The example is a query against the standard Oracle sample database.

SELECT STDDEV(SAL) from emp;

STDDEV(SAL)

 1182.5032 [bookmark: _Toc394808509][bookmark: _Toc463693786][bookmark: _Toc463695717][bookmark: _Toc463705004]

[bookmark: Heading233]
 SUM

Description: Adds up all the values of the population of records
selected by the
query.[bookmark: _Toc394808510][bookmark: _Toc463693787][bookmark: _Toc463695718][bookmark: _Toc463705005]

[bookmark: Heading234]
 SUM Syntax

SUM(<DISTINCT or ALL> column_to_add)

The two methods to access rows are as follows:

			 	DISTINCT[md]Selects unique values from the population
selected by the query.

			 	ALL[md]Selects all rows from the population selected by the
query.

Where Used: SQL queries and GROUP BY
clauses[bookmark: _Toc394808511][bookmark: _Toc463693788][bookmark: _Toc463695719][bookmark: _Toc463705006]

[bookmark: Heading235]
 SUM Examples

Just a Minute -
The examples are queries against the standard Oracle sample
database.

SELECT SUM(SAL) from EMP;

SUM(SAL)

 29025

SELECT deptno,SUM(SAL) from emp
 GROUP BY deptno;

DEPTNO SUM(SAL)
--------- ---------
 10 8750
 20 10875
 30 9400 [bookmark: _Toc394808512][bookmark: _Toc463693789][bookmark: _Toc463695720][bookmark: _Toc463705007]

[bookmark: Heading236]
 VARIANCE

Description: Calculates the variance of the values in a column
selected by the
query.[bookmark: _Toc394808513][bookmark: _Toc463693790][bookmark: _Toc463695721][bookmark: _Toc463705008]

[bookmark: Heading237]
 VARIANCE Syntax

VARIANCE(<DISTINCT or ALL> column_to_calculate_Variance)

The two methods to access rows are as follows:

			 	DISTINCT[md]Selects unique values from the population
selected by the query.

			 	ALL[md]Selects all rows from the population selected by the
query.

Where Used: SQL queries and GROUP BY
clauses[bookmark: _Toc394808514][bookmark: _Toc463693791][bookmark: _Toc463695722][bookmark: _Toc463705009]

[bookmark: Heading238]
 VARIANCE Example

Just a Minute -
The example is a query against the standard Oracle sample database.

SELECT VARIANCE(SAL) from emp;

VARIANCE(SAL)

 1398313.9 [bookmark: _Toc394808515][bookmark: _Toc463693792][bookmark: _Toc463695723][bookmark: _Toc463705010]

[bookmark: Heading239]
 Miscellaneous Functions

Oracle provides several other miscellaneous functions that can be used
from within
PL/SQL.[bookmark: _Toc463693793][bookmark: _Toc463695724][bookmark: _Toc463705011][bookmark: _Toc394808516]

[bookmark: Heading240]
 BFILENAME

Description: Similar to the C language, this function returns a
pointer to the physical path and location of where a LOB (large object) binary
file is stored. This file is not stored within an Oracle table but is stored as
a file accessible by the operating system. You can store the locators in the
Oracle table, which are the pointers to the physical file on the system. You
must create a directory object that stores the binary file's system path.
This function is available only in
Oracle8.[bookmark: _Toc463693794][bookmark: _Toc463695725][bookmark: _Toc463705012]

[bookmark: Heading241]
 BFILENAME Syntax

BFILENAME('directory_object','filename')

Where Used: PL/SQL and SQL
statements[bookmark: _Toc463693795][bookmark: _Toc463695726][bookmark: _Toc463705013]

[bookmark: Heading242]
 BFILENAME Example

Just a Minute -
This example first creates a directory object called MYPATH. Type the
CREATE DIRECTORY statement at the SQL*Plus prompt and press Enter. Next,
enter the code, which assigns a locator to the filename PLUS40.EXE, which is
stored in the path c:\orant\bin.

CREATE DIRECTORY MYPATH AS 'C:\ORANT\BIN'

DECLARE

/* This Anonymous PL/SQL block will demonstrate how to
 create a locator with the BFILENAME function, and
 then test to see if the file exists. You can change
 the name of the file or path to suit your platform */

 v_MYFILE BFILE; -- BFILE to access
 v_FILEEXISTS INTEGER; -- Holds status if the file actually exists

BEGIN
 v_MYFILE := BFILENAME('MYPATH','PLUS40.EXE'); -- Create locator
 v_FILEEXISTS := DBMS_LOB.FILEEXISTS(v_MYFILE);

 IF v_FILEEXISTS = 1 THEN
 DBMS_OUTPUT.PUT_LINE('The file exists');
 ELSE
 DBMS_OUTPUT.PUT_LINE('The file cannot be found');
 END IF;

END;

The file exists [bookmark: _Toc463693796][bookmark: _Toc463695727][bookmark: _Toc463705014]

[bookmark: Heading243]
 DECODE

Description: Enables you to perform an IF...THEN...ELSE
type comparison from a list of values. Each comparison value is compared against
main_value. If all the comparisons return false, then the
default value is used; otherwise, the first true comparison returns the
value associated with the
comparison.[bookmark: _Toc394808517][bookmark: _Toc463693797][bookmark: _Toc463695728][bookmark: _Toc463705015]

[bookmark: Heading244]
 DECODE Syntax

DECODE(main_value,comparison1,value1,
 comparison2,value2, ...
 default)

Where Used: SQL queries
only[bookmark: _Toc394808518][bookmark: _Toc463693798][bookmark: _Toc463695729][bookmark: _Toc463705016]

[bookmark: Heading245]
 DECODE Example

Just a Minute -
The example is a query against the standard Oracle sample database. The
DECODE function compares the value 3000 to every occurrence of
3000 in the salary column, or 3000 in the commission column, and
returns the value 3000 if there is a match or a value of 0
(default value) if there is no match.

SELECT
DECODE(3000,sal,3000,comm,3000,0) from emp

DECODE(3000,SAL,3000,COMM,3000,0)

 0
 0
 0
 0
 0
 0
 0
 3000
 0
 0
 0
 0
 3000
 0 [bookmark: _Toc394808519][bookmark: _Toc463693799][bookmark: _Toc463695730][bookmark: _Toc463705017]

[bookmark: Heading246]
 DUMP

Description: Provides a dump of values in a string VARCH2
to see the representation in many different formats. This function returns the
datatype code, length, and representation in the number_format
specified. The default number_format is
decimal.[bookmark: _Toc394808520][bookmark: _Toc463693800][bookmark: _Toc463695731][bookmark: _Toc463705018]

[bookmark: Heading247]
 DUMP Syntax

DUMP(column,<number_format>,<start_position>,<length>

The optional number format can be specified as follows:

		

Number Format

		

Description

		

8

		

Octal

		

10

		

Decimal

		

16

		

Hexadecimal

		

17

		

Single characters

The return datatype codes are as follows:

		

Datatype Code

		

Description

		

1

		

VARCHAR2

		

2

		

NUMBER

		

8

		

LONG

		

12

		

DATE

		

23

		

RAW

		

24

		

LONG RAW

		

69

		

ROWID

		

96

		

CHAR

		

106

		

MLSLABEL

Where Used: SQL queries
only[bookmark: _Toc394808521][bookmark: _Toc463693801][bookmark: _Toc463695732][bookmark: _Toc463705019]

[bookmark: Heading248]
 DUMP Example

Just a Minute -
The example is a query against the standard Oracle sample database.

SELECT JOB,DUMP(JOB) from EMP;

JOB DUMP(JOB)
--------- ---
CLERK Typ=1 Len=5: 67,76,69,82,75

SALESMAN Typ=1 Len=8: 83,65,76,69,83,77,65,78

SALESMAN Typ=1 Len=8: 83,65,76,69,83,77,65,78

MANAGER Typ=1 Len=7: 77,65,78,65,71,69,82

SALESMAN Typ=1 Len=8: 83,65,76,69,83,77,65,78

MANAGER Typ=1 Len=7: 77,65,78,65,71,69,82

MANAGER Typ=1 Len=7: 77,65,78,65,71,69,82

ANALYST Typ=1 Len=7: 65,78,65,76,89,83,84

PRESIDENT Typ=1 Len=9: 80,82,69,83,73,68,69,78,84

SALESMAN Typ=1 Len=8: 83,65,76,69,83,77,65,78

CLERK Typ=1 Len=5: 67,76,69,82,75

CLERK Typ=1 Len=5: 67,76,69,82,75

ANALYST Typ=1 Len=7: 65,78,65,76,89,83,84

CLERK Typ=1 Len=5: 67,76,69,82,75

All these are Type 1, which represents the datatype VARCHAR2. The
length and decimal representation are displayed. The decimal representation is
based on an IBM PC or compatible ASCII table.
[bookmark: _Toc463693802][bookmark: _Toc463695733][bookmark: _Toc463705020][bookmark: _Toc394808522]

[bookmark: Heading249]
 EMPTY_BLOB

Description: Initializes a BLOB variable or column that
stores a locator pointing to the data stored in the table. This function is
available only in
Oracle8.[bookmark: _Toc463693803][bookmark: _Toc463695734][bookmark: _Toc463705021]

[bookmark: Heading250]
 EMPTY_BLOB Syntax

EMPTY_BLOB()

Where Used: PL/SQL and SQL
statements[bookmark: _Toc463693804][bookmark: _Toc463695735][bookmark: _Toc463705022]

[bookmark: Heading251]
 EMPTY_BLOB Example

Just a Minute -
This example shows how to add a locator to the table. You first need to
execute the command at the SQL*Plus prompt to create the table. Then enter and
execute the code to add a BLOB and CLOB locator to the
table.

CREATE TABLE MYLOBTABLE(
 blobloc BLOB,
 clobloc CLOB)
/

INSERT INTO MYLOBTABLE VALUES(EMPTY_BLOB(),EMPTY_CLOB())
/

1 row created. [bookmark: _Toc463693805][bookmark: _Toc463695736][bookmark: _Toc463705023]

[bookmark: Heading252]
 EMPTY_CLOB

Description: Initializes a CLOB variable or column that
stores a locator pointing to the data stored in the table. This function is
available only in
Oracle8.[bookmark: _Toc463693806][bookmark: _Toc463695737][bookmark: _Toc463705024]

[bookmark: Heading253]
 EMPTY_CLOB Syntax

EMPTY_CLOB()

Where Used: PL/SQL and SQL
statements[bookmark: _Toc463693807][bookmark: _Toc463695738][bookmark: _Toc463705025]

[bookmark: Heading254]
 EMPTY_CLOB Example

Just a Minute -
This example shows how to add a locator to the table. You first need to
execute the command at the SQL*Plus prompt to create the table. Then enter and
execute the code to add a BLOB and CLOB locator to the table. You
don't need to create the table if the table already exists from completing
the example with the EMPTY_BLOB function.

CREATE TABLE MYLOBTABLE(
 blobloc BLOB,
 clobloc CLOB)
/

INSERT INTO MYLOBTABLE VALUES(EMPTY_BLOB(),EMPTY_CLOB())
/

1 row created. [bookmark: _Toc463693808][bookmark: _Toc463695739][bookmark: _Toc463705026]

[bookmark: Heading255]
 GREATEST

Description: Selects the greatest value from a list. All items are
compared and converted to the same datatype as the first value in the
list.[bookmark: _Toc394808523][bookmark: _Toc463693809][bookmark: _Toc463695740][bookmark: _Toc463705027]

[bookmark: Heading256]
 GREATEST Syntax

GREATEST(expression_or_value1,<value_or_expression2>,...)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808524][bookmark: _Toc463693810][bookmark: _Toc463695741][bookmark: _Toc463705028]

[bookmark: Heading257]
 GREATEST Example

SELECT SAL,GREATEST(sal,2000) from emp;

SAL GREATEST(SAL,2000)
--------- ------------------
 800 2000
 1600 2000
 1250 2000
 2975 2975
 1250 2000
 2850 2850
 2450 2450
 3000 3000
 5000 5000
 1500 2000
 1100 2000
 950 2000
 3000 3000
2000

This query lets you see who has a salary of 2000 or greater. In
the second column, the GREATEST function either uses 2000, or the
value in the column SAL if this value is greater than 2000. You
can make the comparison between the two columns to verify that this function
worked.
[bookmark: _Toc394808525][bookmark: _Toc463693811][bookmark: _Toc463695742][bookmark: _Toc463705029]

[bookmark: Heading258]
 GREATEST_LB

Description: Selects from a list of labels the greatest lower
bound. All values compared must be of datatype MLSLABEL or RAW
MLSLABEL in order to execute
properly.[bookmark: _Toc394808526][bookmark: _Toc463693812][bookmark: _Toc463695743][bookmark: _Toc463705030]

[bookmark: Heading259]
 GREATEST_LB Syntax

GREATEST_LB(label1,<label2>,...)

Where Used: SQL queries in Trusted Oracle
only[bookmark: _Toc394808528][bookmark: _Toc463693814][bookmark: _Toc463695745][bookmark: _Toc463705032]

[bookmark: Heading260]
 LEAST

Description: Selects the smallest value from a list. All items are
compared and converted to the same datatype as the first value in the
list.[bookmark: _Toc394808529][bookmark: _Toc463693815][bookmark: _Toc463695746][bookmark: _Toc463705033]

[bookmark: Heading261]
 LEAST Syntax

LEAST(expression_or_value1, <value_or_expression2>,...)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808530][bookmark: _Toc463693816][bookmark: _Toc463695747][bookmark: _Toc463705034]

[bookmark: Heading262]
 LEAST Example

Just a Minute -
The example is a query against the standard Oracle sample database.

SELECT sal,LEAST(sal,2000) from emp;

SAL LEAST(SAL,2000)
--------- ---------------
 800 800
 1600 1600
 1250 1250
 2975 2000
 1250 1250
 2850 2000
 2450 2000
 3000 2000
 5000 2000
 1500 1500
 1100 1100
 950 950
 3000 2000
 1300 1300 [bookmark: _Toc394808531][bookmark: _Toc463693817][bookmark: _Toc463695748][bookmark: _Toc463705035]

[bookmark: Heading263]
 LEAST_LB

Description: Selects from a list of labels the least lower bound.
All values compared must be of datatype MLSLABEL or RAW MLSLABEL
in order to execute
properly.[bookmark: _Toc394808532][bookmark: _Toc463693818][bookmark: _Toc463695749][bookmark: _Toc463705036]

[bookmark: Heading264]
 LEAST_LB Syntax

LEAST_LB(label1,<label2>,...)

Where Used: SQL queries in Trusted Oracle
only[bookmark: _Toc463693820][bookmark: _Toc463695751][bookmark: _Toc463705038][bookmark: _Toc394808534]

[bookmark: Heading265]
 NLS_CHARSET_ID

Description: Returns the NLS character set ID number associated
with the NLS character set name, which must be passed in uppercase. For the
character_set_name parameter, you can use CHAR_CS to obtain
the server's database character set ID number or NCHAR_CS to return
the server's national character set ID number. Refer to the Oracle8
Server Reference Manual for a list of more than 100 available character
sets. This function is available only in
Oracle8.[bookmark: _Toc463693821][bookmark: _Toc463695752][bookmark: _Toc463705039]

[bookmark: Heading266]
 NLS_CHARSET_ID Syntax

NLS_CHARSET_ID(character_set_name)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc463693822][bookmark: _Toc463695753][bookmark: _Toc463705040]

[bookmark: Heading267]
 NLS_CHARSET_ID Example

Just a Minute -
This example shows the server's character set ID and national character
set ID. Make sure that you have typed SET SERVEROUTPUT ON at the SQL*Plus
prompt to see these values output to the screen.

DECLARE
 v_HOLDCHARSETID Number; -- Holds Character Set ID
 v_HOLDNCHARSETID Number; -- Holds National Char Set ID
BEGIN
/*Calls the function NLS_CHARSET twice - The first time
 returns the server's character set ID, and the second
 time returns the server's national character set ID */
 v_HOLDCHARSETID := NLS_CHARSET_ID('CHAR_CS');
 v_HOLDNCHARSETID := NLS_CHARSET_ID('NCHAR_CS');
-- Outputs the two values to screen
DBMS_OUTPUT.PUT_LINE('The server's character set ID is: '
 || v_HOLDCHARSETID);
DBMS_OUTPUT.PUT_LINE('The server's national character set ID is: '
 || v_HOLDNCHARSETID);
END;

The server's character set ID is: 31
The server's national character set ID is: 31 [bookmark: _Toc463693823][bookmark: _Toc463695754][bookmark: _Toc463705041]

[bookmark: Heading268]
 NLS_CHARSET_NAME

Description: Returns the NLS character set name associated with
the NLS character set ID passed to the function. Refer to the Oracle8 Server
Reference Manual for a list of more than 100 available character sets. This
function is available in
Oracle8.[bookmark: _Toc463693824][bookmark: _Toc463695755][bookmark: _Toc463705042]

[bookmark: Heading269]
 NLS_CHARSET_NAME Syntax

NLS_CHARSET_NAME(character_set_id)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc463705043][bookmark: x]

[bookmark: Heading270]
 NLS_CHARSET_NAME Example

Just a Minute -
This example passes several NLS character set IDs to the
NLS_CHARSET_NAME function and displays the corresponding NLS character
set names associated with the ID.

DECLARE
 v_CHARNAME1 VARCHAR2(60); -- Holds 1st character set name
 v_CHARNAME2 VARCHAR2(60); -- Holds 2nd character set name
 v_CHARNAME3 VARCHAR2(60); -- Holds 3rd character set name

BEGIN
/*Calls the function NLS_CHARSET_NAME three times with
 three different character set ID numbers */
 v_CHARNAME1 := NLS_CHARSET_NAME(174);
 v_CHARNAME2 := NLS_CHARSET_NAME(835);
 v_CHARNAME3 := NLS_CHARSET_NAME(11);
-- Outputs the three values to screen
DBMS_OUTPUT.PUT_LINE('Character Set 174 is: '
 || v_CHARNAME1);
DBMS_OUTPUT.PUT_LINE('Character Set 835 is: '
 || v_CHARNAME2);
DBMS_OUTPUT.PUT_LINE('Character Set 11 is: '
 || v_CHARNAME3);

END;

Character Set 174 is: EL8MSWIN1253
Character Set 835 is: JA16EBCDIC930
Character Set 11 is: D7DEC [bookmark: _Toc463693826][bookmark: _Toc463695757][bookmark: _Toc463705044]

[bookmark: Heading271]
 NVL

Description: Allows you to compare to values in the function. If
the first value is NULL, the second value is returned; otherwise, the
first value is returned. This function is useful to check for NULL
values. If the first value is NULL, you can simply return a default value
from
Expression2.[bookmark: _Toc394808535][bookmark: _Toc463693827][bookmark: _Toc463695758][bookmark: _Toc463705045]

[bookmark: Heading272]
 NVL Syntax

NVL(Expression1,Expression2)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808536][bookmark: _Toc463693828][bookmark: _Toc463695759][bookmark: _Toc463705046]

[bookmark: Heading273]
 NVL Example

SELECT NVL('Tim',NULL) "Example1",NVL(NULL,'Expression2')
 "Example2",NVL(NULL,NULL) "Example3"
 from Dual;

Exa Example2 E
--- ----------- -
Tim Expression2 [bookmark: _Toc463693829][bookmark: _Toc463695760][bookmark: _Toc463705047][bookmark: _Toc394808537]

[bookmark: Heading274]
 SQLCODE

Description: Used primarily in the handling of errors. This
function returns the error code based on the current error. Refer to the section
"Oracle7 Server Messages" in Oracle7 Server SQL Reference for a
complete listing of error codes and their
meanings.[bookmark: _Toc394808547][bookmark: _Toc463693830][bookmark: _Toc463695761][bookmark: _Toc463705048]

[bookmark: Heading275]
 SQLCODE Syntax

SQLCODE

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808548][bookmark: _Toc463693831][bookmark: _Toc463695762][bookmark: _Toc463705049]

[bookmark: Heading276]
 SQLCODE Example

CREATE OR REPLACE FUNCTION emptype (paytype CHAR)
 RETURN VARCHAR2 IS
BEGIN
 IF paytype = 'H' THEN
 RETURN 'Hourly';
 ELSIF paytype = 'S' THEN
 RETURN 'Salaried';
 ELSIF paytype = 'E' THEN
 RETURN 'Executive';
 ELSE
 RETURN 'Invalid Type';
 END IF;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Your Error Code is ' || SQLCODE);
 DBMS_OUTPUT.PUT_LINE('The Error Code Means ' ||
 SQLERRM(SQLCODE));
END emptype; [bookmark: _Toc394808549][bookmark: _Toc463693832][bookmark: _Toc463695763][bookmark: _Toc463705050]

[bookmark: Heading277]
 SQLERRM

Description: Used primarily in the handling of errors. This
function returns the error message associated with the error code. You can also
create your own error codes and messages. Refer to the section "Oracle7
Server Messages" in Oracle7 Server SQL Reference for a complete
listing of error codes and their
meanings.[bookmark: _Toc394808550][bookmark: _Toc463693833][bookmark: _Toc463695764][bookmark: _Toc463705051]

[bookmark: Heading278]
 SQLERRM Syntax

SQLERRM(Error_Code)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808551][bookmark: _Toc463693834][bookmark: _Toc463695765][bookmark: _Toc463705052]

[bookmark: Heading279]
 SQLERRM Example

BEGIN
 DBMS_OUTPUT.PUT_LINE('Error message 100 means ' || SQLERRM(100));
 DBMS_OUTPUT.PUT_LINE('Error message 0 means ' || SQLERRM(0));
 DBMS_OUTPUT.PUT_LINE('Error message -1 means ' || SQLERRM(-1));
 DBMS_OUTPUT.PUT_LINE('Error message 10 means ' || SQLERRM(10));
 DBMS_OUTPUT.PUT_LINE('Error message -54 means ' || SQLERRM(-54));
 DBMS_OUTPUT.PUT_LINE('Error message -6502 means ' || SQLERRM(-6502));
 DBMS_OUTPUT.PUT_LINE('Error message -1012 means ' || SQLERRM(-1012));
END;

Error message 100 means ORA-01403: no data found
Error message 0 means ORA-0000: normal, successful completion
Error message -1 means ORA-00001: unique constraint (.) violated
Error message 10 means ORA-65526:
 Message 65526 not found; product=RDBMS73; facility=ORA
Error message -54 means ORA-00054:
 resource busy and acquire with NOWAIT specified
Error message -6502 means ORA-06502: PL/SQL: numeric or value error
Error message -1012 means ORA-01012: not logged on [bookmark: _Toc463693838][bookmark: _Toc463695769][bookmark: _Toc463705056]

[bookmark: Heading280]
 UID

Description: Returns the unique number associated with the user ID
of the current database
user.[bookmark: _Toc394808538][bookmark: _Toc463693839][bookmark: _Toc463695770][bookmark: _Toc463705057]

[bookmark: Heading281]
 UID Syntax

UID

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808539][bookmark: _Toc463693840][bookmark: _Toc463695771][bookmark: _Toc463705058]

[bookmark: Heading282]
 UID Example

SELECT UID from DUAL;

UID

 8 [bookmark: _Toc394808540][bookmark: _Toc463693841][bookmark: _Toc463695772][bookmark: _Toc463705059]

[bookmark: Heading283]
 USER

Description: Returns the username in VARCHAR2 datatype of
the current user. Similar to a WHOAMI
command.[bookmark: _Toc394808541][bookmark: _Toc463693842][bookmark: _Toc463695773][bookmark: _Toc463705060]

[bookmark: Heading284]
 USER Syntax

USER

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808542][bookmark: _Toc463693843][bookmark: _Toc463695774][bookmark: _Toc463705061]

[bookmark: Heading285]
 USER Example

SELECT USER from DUAL;

USER

SCOTT [bookmark: _Toc394808543][bookmark: _Toc463693844][bookmark: _Toc463695775][bookmark: _Toc463705062]

[bookmark: Heading286]
 USERENV

Description: Returns the information about the environment of the
database logged in to by the user. This function returns a VARCHAR2 value
based on the environment option desired (see Table B.6).

Table B.6[em]Environment Options for USERENV

[bookmark: _Toc463705063]

		
Environment Option

		
Description of Returned Value

		
OSDBA

		
Returns true, if the user has the OSDBA role enabled;
otherwise, returns false.

		
LABEL

		
Returns the current session label. Valid only in Trusted Oracle. Refer to
Trusted Oracle7 Server Administrator's Guide for more
details.

		
LANGUAGE

		
Returns both the language and character set currently used in the
session.

		
TERMINAL

		
Returns the value of the operating system environment.

		
SESSIONID

		
If the AUDIT_TRAIL initialization is set to true, returns
the audit session identifier.

		
ENTRYID

		
If the AUDIT_TRAIL initialization is set to true, returns
the available auditing entry identifier.

[bookmark: Heading287]
 USERENV Syntax

USERENV(environment_option)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808545][bookmark: _Toc463693846][bookmark: _Toc463695777][bookmark: _Toc463705064]

[bookmark: Heading288]
 USERENV Example

SELECT USERENV('TERMINAL'),USERENV('LANGUAGE') from DUAL;

USERENV('TERMINA USERENV('LANGUAGE')
---------------- -----------------------------
Windows 95 PC AMERICAN_AMERICA.WE8ISO8859P1 [bookmark: _Toc394808552][bookmark: _Toc463693847][bookmark: _Toc463695778][bookmark: _Toc463705065]

[bookmark: Heading289]
 VSIZE

Description: Returns the number of bytes of the internal
representation of the value. If the value is NULL, then NULL is
returned.[bookmark: _Toc394808553][bookmark: _Toc463693848][bookmark: _Toc463695779][bookmark: _Toc463705066]

[bookmark: Heading290]
 VSIZE Syntax

VSIZE(Column_Name/Value)

Where Used: PL/SQL and SQL
statements[bookmark: _Toc394808554][bookmark: _Toc463693849][bookmark: _Toc463695780][bookmark: _Toc463705067]

[bookmark: Heading291]
 VSIZE Examples

SELECT VSIZE(100),VSIZE('TIM'),VSIZE(100.3232) from DUAL;[bookmark: Bookmark]

VSIZE(100) VSIZE('TIM') VSIZE(100.3232)
---------- ------------ ---------------
 2 3 5

SELECT ENAME,VSIZE(ENAME) from EMP;

ENAME VSIZE(ENAME)
---------- ------------
SMITH 5
ALLEN 5
WARD 4
JONES 5
MARTIN 6
BLAKE 5
CLARK 5
SCOTT 5
KING 4
TURNER 6
ADAMS 5
JAMES 5
FORD 4
MILLER 6

© Copyright Macmillan USA. All rights reserved.

�
user
appb_source.htm

 - 2 -

Sams Teach Yourself SQL in 24 Hours, Second Edition
by Ronald R. Plew and Ryan K. Stephens ISBN: 0672318997

Sams © 2000, 440 pages

Learn the basics of SQL through structured lessons.

Companion Web Site

Table of Contents Colleague Comments
Back Cover

Synopsis by Dean Andrews

If you have some experience using or administering a database but still need
to learn more about the basics of SQL, this book is a great place to start. This
text covers building a relational database, structuring queries, performance
optimization, and administering users. Like other books in the "in 24 Hours"
series, each chapter functions as a lesson and includes a summary, questions
and answers, a quiz, and excercises. The second edition adds new concepts
found in the SQL3 standard. A glossary in one of the appendices helps you
learn SQL terminology.

Table of Contents

 Sams Teach Yourself SQL in 24 Hours Second Edition - 4
 Introduction - 6
 Part I A SQL Concepts Overview
 Hour 1 - Welcome to the World of SQL - 8
 Part II Building Your Database
 Hour 2 - Defining Data Structures - 19
 Hour 3 - Managing Database Objects - 25
 Hour 4 - The Normalization Process - 234
 Hour 5 - Manipulating Data - 235
 Hour 6 - Managing Database Transactions - 237
 Part III Getting Effective Results from Queries
 Hour 7 - Introduction to the Database Query - 237
 Hour 8 - Using Operators to Categorize Data - 238
 Hour 9 - Summarizing Data Results from a Query - 240
 Hour 10 - Sorting and Grouping Data - 241
 Hour 11 - Restructuring the Appearance of Data - 242
 Hour 12 - Understanding Dates and Times - 242
 Part IV Building Sophisticated Database Queries
 Hour 13 - Joining Tables in Queries - 243
 Hour 14 - Using Subqueries to Define Unknown Data - 246

 - 3 -

 Hour 15 - Combining Multiple Queries into One - 250
 Part V SQL Performance Tuning
 Hour 16 - Using Indexes to Improve Performance - 252
 Hour 17 - Improving Database Performance - 253
 Part VI Using SQL to Manage Users and Security
 Hour 18 - Managing Database Users - 254
 Hour 19 - Managing Database Security - 255
 Part VII Summarized Data Structures
 Hour 20 - Creating and Using Views and Synonyms - 256
 Hour 21 - Working with the System Catalog - 256
 Part VIII Applying SQL Fundamentals in Today's World
 Hour 22 - Advanced SQL Topics - 256
 Hour 23 - Extending SQL to the Enterprise, the Internet, and the Intranet - 257

 Hour 24 - Extensions to Standard SQL - 257
 Part IX Appendixes
 Appendix A - Common SQL Commands
 Appendix B - ASCII Table
 Appendix C - Answers to Quizzes and Exercises
 Appendix D - REATE TABLE Statements for Book Examples
 Appendix E - NSERT Statements for Data in Book Examples
 Appendix F - Glossary
 List of Figures
 List of Tables

Back Cover
In just 24 sessions of one hour or less, you will be up and running with SQL.
Using a straightforward, step-by-step approach, each lesson builds on the
previous one, allowing you to learn the essentials of SQL from the ground up.

• Tips point out shortcuts and solutions
• Notes clarify concepts and procedures in a straightforward manner
• Cautions help you avoid common pitfalls

Learn how to...

• Build and manage relational database objects
• Effectively query the database
• Master functions and clauses to query data
• Summarize data with views
• Uncover ways to summarize, sort and group, and restructure the

appearance of data
• Performance tune SQL statements
• Use SQL to implement database security

About the Authors

Ryan Stephens and Ronald Plew are President and Vice President of
Perpetual Technologies, Inc., where their duties include Oracle database

 - 4 -

administration and consulting and Oracle, SQL, and UNIX training. They have
both been teaching at the collegiate level for over three years as adjunct
professors at Indiana University-Purdue University in Indianapolis. Both are
Oracle Certified Professional, having specialized in Oracle and UNIX for more
than 10 years each.

Sams Teach Yourself SQL in 24 Hours Second Edition
Ronald R. Plew and Ryan K. Stephens
Copyright  2000 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 0-672-31899-7

Library of Congress Catalog Card Number: 99-068988
Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of any trademark or service mark.
Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an "as is" basis. The authors and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this book.
Associate Publisher
Michael Stephens
Acquisitions Editor
Angela Kozlowski
Development Editor
Tiffany Taylor
Managing Editor
Charlotte Clapp
Project Editor
Christina Smith
Copy Editor
Pat Kinyon
Indexer
Deborah Hittel
Proofreaders
Bob LaRoche
Tony Reitz
Technical Editors
Jason R. Wright
Dallas Releford
Team Coordinator
Pamalee Nelson
Media Developer
Jason Haines
Interior Designer
Gary Adair

 - 5 -

Cover Designer
Aren Howell
Copywriter
Eric Borgert
Production
Darin Crone
Steve Geiselman
Dedication
This book is dedicated to my family: my wife, Linda; my mother, Betty; my children, Leslie, Nancy,
Angela, and Wendy; my grandchildren, Andy, Ryan, Holly, Morgan, Schyler, Heather, Gavin, and
Ragan; and my sons-in law, Jason and Dallas. Thanks for being patient with me during this busy time.
Love all of you.
—Poppy
This book is dedicated to my son Daniel Thomas Stephens and to my nephews and nieces, Brandon,
Jacob, Mariah, Harley, Tiffany, and little Tim.
—Ryan
Acknowledgments

Thanks to all the people in our lives that have been patient during our work on this project; mostly to our
wives, Tina and Linda. Thanks also to the editorial staff at Sams for all of their hard work to make this
edition better than the last. It has been a pleasure to work with each of you.
—Ryan and Ron
About the Authors
RONALD R. PLEW is vice president and CIO for Perpetual Technologies, Inc., in Indianapolis, Indiana.
Ron is a Certified Oracle Professional, and his duties include Oracle database consulting and training.
Ron is an adjunct professor at Indiana University-Purdue University in Indianapolis and Indiana
University at Kokomo, where he teaches SQL and various database courses. He holds a Bachelor of
Science degree in Business Management/Administration from Indiana Institute of Technology, Fort
Wayne, Indiana. Ron also serves in the Indiana Army National Guard, where he is the
programmer/analyst for the 433rd Personnel Detachment. Ron's hobbies include golf, chess, and
collecting Indianapolis 500 racing memorabilia. He shares ownership of Plew's Indy 500 Museum with
his brothers, Mark and Dennis; his sister, Arleen; and mother, Betty. Ron lives in Indianapolis with his
wife Linda. Ron and Linda have four children and eight grandchildren with the ninth due in August,
2000.
RYAN STEPHENS is president and CEO for Perpetual Technologies, Inc., an Oracle training and
consulting firm in Indianapolis, Indiana that is partnered with Oracle Corporation. He has specialized in
Oracle databases and SQL for about 10 years, working as an Oracle programmer/analyst and Oracle
Database Administrator. Ryan is a Certified Oracle Professional and is also an adjunct professor at
Indiana University-Purdue University in Indianapolis and Indiana University at Kokomo, where he
teaches SQL, PL/SQL, UNIX, Oracle Designer, Oracle Forms, and Oracle database administration.
Ryan resides in Indianapolis with his wife Tina and his their Daniel.
Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your opinion
and want to know what we're doing right, what we could do better, what areas you'd like to see us
publish in, and any other words of wisdom you're willing to pass our way.

As an Associate Publisher for Sams Publishing, I welcome your comments. You can fax, email, or write
me directly to let me know what you did or didn't like about this book—as well as what we can do to
make our books stronger.
Please note that I cannot help you with technical problems related to the topic of this book, and that due
to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and authors as well as your name and phone
or fax number. I will carefully review your comments and share them with the authors and editors who
worked on the book.

Fax: 317-581-4770

Email: michael.stephens@macmillanusa.com

Mail: Michael Stephens
Associate Publisher
Sams Publishing
201 West 103rd Street

 - 6 -

Indianapolis, IN 46290 USA

Introduction
Who Should Read This Book?

Welcome to the world of relational databases and SQL! This book is written for those self-motivated
individuals out there who would like to get an edge on relational database technology by learning the
Structured Query Language—SQL. This book was written primarily for those with very little or no relative
experience with relational database management systems using SQL. This book may also apply to those
who have some experience with relational databases but need to learn how to navigate within the database,
issue queries against the database, build database structures, manipulate data in the database, and more.
This book was not geared toward individuals with significant relational database experience who have been
using SQL on a regular basis.

What This Book Intends to Accomplish
This book was written for individuals with little or no experience using SQL or those who have used a
relational database, but their tasks have been very limited within the realm of SQL. Keeping this thought in
mind, it should be noted up front that this book is strictly a learning mechanism, and one in which we present
the material from ground zero and provide examples and exercises with which to begin to apply the material
covered. This book is not a reference and should not be relied on as a reference.

What We Added to This Edition
This edition contains the same content and format as the first edition. We have been through the entire book,
searching for the little things that could be improved to produce a better edition. We have also added
concepts and commands from the new SQL standard, SQL3, to bring this book up to date, making it more
complete and applicable to today's SQL user.

What You Need
You may be wondering, what do I need to make this book work for me? Theoretically, you should be able to
pick up this book, study the material for the current hour, study the examples, and either write out the
exercises or run them on a relational database server. However, it would be to your benefit to have access to
a relational database system to which to apply the material in each lesson. The relational database to which
you have access is not a major factor, because SQL is the standard language for all relational databases.
Some database systems that you can use include Oracle, Sybase, Informix, Microsoft SQL Server, Microsoft
Access, and dBase.

Conventions Used in This Book
For the most part, we have tried to keep conventions in this book as simple as possible.

Many new terms are identified and are printed in italics.
In the listings, all code that you type in (Input) appears in boldface monospace. Output appears in
standard monospace.

SQL code and keywords have been placed in uppercase for your convenience and general consistency.
For example:
SELECT * FROM PRODUCTS_TBL;

PROD_ID PROD_DESC COST
---------- ------------------------------------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75

 - 7 -

13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

9 rows selected.

The following special design features enhance the text:

There are syntax boxes to draw your attention to the syntax of the commands discussed during each
hour.
SELECT [ALL | * | DISTINCT COLUMN1, COLUMN2]
FROM TABLE [, TABLE2];

Note Notes are provided to expand on the material covered in each hour of the book.

Warning Warnings are provided to warn the reader about "disasters" that could occur
and certain precautions that should be taken.

Tip Tips are also given to supplement the material covered during appropriate hours of
study.

ANSI SQL and Vendor Implementations

One thing that is difficult about writing a book like this on standard SQL is that although there is an ANSI
standard for SQL, each database vendor has its own implementation of SQL. With each implementation
come variations from the actual standard, enhancements to the standard, and even missing elements from
the standard.

The expected question is, "Because there is an ANSI standard for SQL, what is so difficult about
teaching standard SQL?" The answer to this question begins with the statement that ANSI SQL is just
that, a standard. ANSI SQL is not an actual language. To teach you SQL, we had to come up with
examples and exercises that involve using one or more implementations of SQL. Because each vendor
has its own implementation with its own specifications for the language of SQL, these variations, if not
handled properly in this book, could actually cause confusion concerning the syntax of various SQL
commands. Therefore, we have tried to stay as close to the ANSI standard as possible, foremost
discussing the ANSI standard and then showing examples from different implementations that are very
close, if not the same, as the exact syntax that ANSI prescribes.

We have, however, accompanied examples of variations among implementations with notes for
reminders and tips on what to watch out for. Just remember this—each implementation differs slightly
from other implementations. The most important thing is that you understand the underlying concepts of
SQL and its commands. Although slight variations do exist, SQL is basically the same across the board
and is very portable from database to database, regardless of the particular implementation.

Understanding the Examples and Exercises

We have chosen to use Oracle for most of the examples in this book; however, we have also shown
examples from Sybase, Microsoft SQL Server, and dBase. Oracle was used the most for various reasons,
including Oracle's compliance with ANSI SQL, and the fact that Oracle is one of the most popular relational
database products today.

As stated, there are some differences in the exact syntax among implementations of SQL. For example,
if you attempt to execute some examples in this book, you may have to make minor modifications to fit
the exact syntax of the implementation that you are using. We have tried to keep all of the examples
compliant with the standard; however, we have intentionally shown you some examples that are not
exactly compliant. The basic structure for all of the commands is the same. To learn SQL, you have to

 - 8 -

start with an implementation using practical examples. You should be able to emulate the database and
examples used in this book without very much difficulty. Any adjustments that you may have to make to
the examples in this book to fit your implementation exactly will only help you to better understand the
syntax and features of your implementation.
The Sams Web site, www.samspublishing.com, contains all the source code from the chapters in
this book, as well as the code needed to create the sample tables and insert data into the sample tables
used in the book (also found in Appendixes D and E).

Good luck!

Part I: A SQL Concepts Overview
Chapter List

Hour 1: Welcome to the World of SQL

Hour 1: Welcome to the World of SQL
Overview

Welcome to the world of SQL and the vast, growing database technologies of today's businesses all over the
world. By reading this book, you have begun accepting the knowledge that will soon be required for survival
in today's world of relational databases and data management. Unfortunately, because it is first necessary to
provide the background of SQL and cover some preliminary concepts that you need to know, the majority of
this hour is text in paragraph format. Bear with the book; this will be exciting, and the "boring stuff" in this
hour definitely pays off.

SQL Definition and History
 New Term Every business has data, which requires some organized method or mechanism for maintaining
the data. This mechanism is referred to as a database management system (DBMS). Database
management systems have been around for years, many of which started out as flat-file systems on a
mainframe. With today's technologies, the accepted use of database management systems has begun to
flow in other directions, driven by the demands of growing businesses, increased volumes of corporate data,
and of course, Internet technologies.

The modern wave of information management is primarily carried out through the use of a relational
database management system (RDBMS), derived from the traditional DBMS. Relational databases and
client/server technologies are typical combinations used by current businesses to successfully manage
their data and stay competitive in their appropriate markets. The next few sections discuss the relational
database and client/server technology to provide you with a stronger foundation of knowledge for the
standard relational database language—SQL.

What Is SQL?
SQL, Structured Query Language, is the standard language used to communicate with a relational database.
The prototype was originally developed by IBM using Dr. E.F. Codd's paper ("A Relational Model of Data for
Large Shared Data Banks") as a model. In 1979, not long after IBM's prototype, the first SQL product,
ORACLE, was released by Relational Software, Incorporated (it was later renamed Oracle Corporation). It is,
today, one of the distinguished leaders in relational database technologies. SQL is pronounced either of two
ways: as the letters S-Q-L, or as "sequel"; both pronunciations are acceptable.

If you travel to a foreign country, you may be required to know that country's language to get around.
For example, you may have trouble ordering from a menu via your native tongue if the waiter speaks
only his country's language. Look at a database as a foreign land in which you seek information. SQL is
the language you use to express your needs to the database. Just as you would order a meal from a
menu in another country, you can request specific information from within a database in the form of a
query using SQL.

 - 9 -

What Is ANSI SQL?
The American National Standards Institute (ANSI) is an organization that approves certain standards in
many different industries. SQL has been deemed the standard language in relational database
communication, originally approved in 1986 based on IBM's implementation. In 1987, the ANSI SQL
standard was accepted as the international standard by the International Standards Organization (ISO). The
standard was revised again in 1992 and was called SQL/92. The newest standard is now called SQL3 or is
sometimes referred to as SQL/99.

The New Standard: SQL3
SQL3 has five interrelated documents and other documents may be added in the near future. The five
interrelated parts are as follows:

 Part 1—SQL/Framework—Specifies the general requirements for conformance and
defines the fundamental concepts of SQL.

 Part 2—SQL/Foundation—Defines the syntax and operations of SQL.
 Part 3—SQL/Call-Level Interface—Defines the interface for application programming

to SQL.
 Part 4—SQL/Persistent Stored Modules—Defines the control structures that then

define SQL routines. Part 4 also defines the modules that contain SQL routines.
 Part 5—SQL/Host Language Bindings—Defines how to embed SQL statements in

application programs that are written in a standard programming language.

The new ANSI standard (SQL3) has two levels of minimal conference that a DBMS may claim: Core
SQL Support and Enhanced SQL Support.
 New Term ANSI stands for American National Standards Institute, an organization that is responsible
for devising standards for various products and concepts.

With any standard come numerous, obvious advantages, as well as some disadvantages. Foremost, a
standard steers vendors in the appropriate industry direction for development; in the case of SQL,
providing a basic skeleton of necessary fundamentals which, as an end result, allows consistency
between various implementations and better serves increased portability (not only for database
programs, but databases in general and individuals who manage databases).

Some may argue that a standard is not so good, limiting the flexibility and possible capabilities of a
particular implementation. However, most vendors who comply with the standard have added product-
specific enhancements to standard SQL to fill in these gaps.

A standard is good, considering the advantages and disadvantages. The expected standard demands
features that should be available in any complete SQL implementation and outlines basic concepts that
not only force consistency between all competitive SQL implementations, but increase the value of a
SQL programmer or relational database user in today's database market.
 New Term A SQL implementation is a particular vendor's SQL product.

What Is a Database?
In very simple terms, a database is a collection of data. Some like to think of a database as an organized
mechanism that has the capability of storing information, through which a user can retrieve stored
information in an effective and efficient manner.

People use databases every day without realizing it. A phone book is a database. The data contained
consists of individuals' names, addresses, and telephone numbers. The listings are alphabetized or
indexed, which allows the user to reference a particular local resident with ease. Ultimately, this data is
stored in a database somewhere on a computer. After all, each page of a phone book is not manually
typed each year a new edition is released.
The database has to be maintained. As people move to different cities or states, entries may have to be
added or removed from the phone book. Likewise, entries will have to be modified for people changing
names, addresses, or telephone numbers, and so on. Figure 1.1 illustrates a simple database.

Figure 1.1: The database.

 - 10 -

An Introduction to the Relational Database
 New Term A relational database is a database divided into logical units called tables, where tables are
related to one another within the database. A relational database allows data to be broken down into logical,
smaller, more manageable units, allowing for easier maintenance and providing more optimal database
performance according to the level of organization. In Figure 1.2, you can see that tables are related to one
another through a common key in a relational database.

Figure 1.2: The relational database.

Again, tables are related in a relational database, allowing adequate data to be retrieved in a single
query (although the desired data may exist in more than one table). By having common keys, or fields,
among relational database tables, data from multiple tables can be joined to form one large result set.
As you venture deeper into this book, you see more of a relational database's advantages, including
overall performance and easy data access.
 New Term A relational database is a database composed of related objects, primarily tables. A table is
the most basic means of storage for data in a database.

An Introduction to Client/Server Technology
In the past, the computer industry was predominately ruled by mainframe computers; large, powerful
systems capable of high storage capacity and high data processing capabilities. Users communicated with
the mainframe through dumb terminals—terminals that did not think on their own, but relied solely on the
mainframe's CPU, storage, and memory. Each terminal had a data line attached to the mainframe. The
mainframe environment definitely served its purpose, and does today in many businesses, but a greater
technology was soon to be introduced: the client/server model.

 New Term In the client/server system, the main computer, called the server, is accessible from a
network—typically a local area network (LAN) or a wide area network (WAN). The server is normally
accessed by personal computers (PCs) or by other servers, instead of dumb terminals. Each PC, called
a client, is provided access to the network, allowing communication between the client and the server,
thus explaining the name client/server. The main difference between client/server and mainframe
environments is that the user's PC in a client/server environment is capable of thinking on its own,
capable of running its own processes using its own CPU and memory, but readily accessible to a server
computer through a network. In most cases, a client/server system is much more flexible for today's
overall business needs and is much preferred.

Relational database systems reside on both mainframes and on client/server platforms, Although a
client/server system is preferred, the continued use of mainframes can certainly be justified according to
a company's needs. A high percentage of companies have recently been leaving their mainframe
systems behind and moving their data to a client/ server system, motivated by the urge to stay current
with new technologies, provide more flexibility to better suit their business needs, and make old systems
Year 2000-compliant.
The switch to a client/server system has proven beneficial for some companies, while others have failed
in the client/server implementation and have, as a result, wasted millions of dollars, causing some to
return to their mainframes; others still hesitate to make a change. The lack of appropriate expertise—a
result of new technology combined with a lack of training—is the main reason for failed
implementations. Nevertheless, an understanding of the client/server model is imperative with the rising
(and sometimes unreasonable) demands placed on today's businesses as well as the development of
Internet technologies and network computing. Figure 1.3 illustrates the concept of client/server
technology.

 - 11 -

Figure 1.3: The client/server model.

Some Popular Relational Database Vendors
Some of the most predominant database vendors include Oracle, Microsoft, Informix, Sybase, and IBM.
Although there are many more, this list includes names that you may have recognized on the bookshelf, in
the newspaper, magazines, the stock market, or on the World Wide Web.

Differences Between Implementations
As each individual in this world is unique in both features and nature, so is each vendor-specific
implementation of SQL. A database server is a product, like any other product on the market, manufactured
by a widespread number of vendors. It is to the benefit of the vendor to ensure that its implementation is
compliant with the current ANSI standard for portability and user convenience. For instance, if a company is
migrating from one database server to another, it would be rather discouraging for the database users to
have to learn another language to maintain functionality with the new system.

 New Term With each vendor's SQL implementation, however, you find that there are enhancements
that serve the purpose for each database server. These enhancements, or extensions, are additional
commands and options that are simply a bonus to the standard SQL package and available with a
specific implementation.

SQL Sessions

 New Term An SQL session is an occurrence of a user interacting with a relational database through the use
of SQL commands. When a user initially connects to the database, a session is established. Within the
scope of an SQL session, valid SQL commands can be entered to query the database, manipulate data in
the database, and define database structures, such as tables.
CONNECT

When a user connects to a database, the SQL session is initialized. The CONNECT command is used to
establish a database connection. With the CONNECT command, you can either invoke a connection or
change connections to the database. For example, if you are connected as USER1, you can use the
CONNECT command to connect to the database as USER2. When this happens, the SQL session for USER1
is implicitly disconnected.

CONNECT user@database

When you attempt to connect to a database, you are automatically prompted for a password that
corresponds with your current username.

DISCONNECT

When a user disconnects from a database, the SQL session is terminated. The DISCONNECT command is
used to disconnect a user from the database. When you disconnect from the database, you may still appear
to be in the tool that allows you to communicate with the database, but you have lost your connection. When
you use EXIT to leave the database, your SQL session is terminated and the tool that you are using to
access the database is normally closed.

CONNECT

Types of SQL Commands
The following sections discuss the basic categories of commands used in SQL to perform various functions.
These functions include building database objects, manipulating objects, populating database tables with
data, updating existing data in tables, deleting data, performing database queries, controlling database
access, and overall database administration.

 - 12 -

The main categories are
 DDL (Data Definition Language)
 DML(Data Manipulation Language)
 DQL (Data Query Language)
 DCL (Data Control Language)
 Data administration commands
 Transactional control commands

Defining Database Structures (DDL)
 New Term Data Definition Language, DDL, is the part of SQL that allows a database user to create and
restructure database objects, such as the creation or the deletion of a table.

The main DDL commands discussed during following hours include the following:
CREATE TABLE
ALTER TABLE
DROP TABLE
CREATE INDEX
ALTER INDEX
DROP INDEX
These commands are discussed in detail during Hour 3, "Managing Database Objects," and Hour 17,
"Improving Database Performance."

Manipulating Data (DML)
 New Term Data Manipulation Language, DML, is the part of SQL used to manipulate data within objects of
a relational database.

There are three basic DML commands:
INSERT
UPDATE
DELETE
These commands are discussed in detail during Hour 5, "Manipulating Data."

Selecting Data (DQL)
Though comprised of only one command, Data Query Language (DQL) is the most concentrated focus of
SQL for a relational database user. The command is as follows:
SELECT

This command, accompanied by many options and clauses, is used to compose queries against a
relational database. Queries, from simple to complex, from vague to specific, can be easily created. The
SELECT command is discussed in exhilarating detail during Hours 7 through 16.
 New Term A query is an inquiry to the database for information.

Data Control Language (DCL)
Data control commands in SQL allow you to control access to data within the database. These DCL
commands are normally used to create objects related to user access and also control the distribution of
privileges among users. Some data control commands are as follows:
ALTER PASSWORD
GRANT
REVOKE
CREATE SYNONYM

You find that these commands are often grouped with other commands and may appear in a number of
different chapters.

Data Administration Commands
Data administration commands allow the user to perform audits and perform analyses on operations within
the database. They can also be used to help analyze system performance. Two general data administration
commands are as follows:

 - 13 -

START AUDIT
STOP AUDIT
 New Term Do not get data administration confused with database administration. Database
administration is the overall administration of a database, which envelops the use of all levels of
commands.

Transactional Control Commands
In addition to the previously introduced categories of commands, there are commands that allow the user to
manage database transactions.

 COMMIT Used to save database transactions
 ROLLBACK Used to undo database transactions
 SAVEPOINT Creates points within groups of transactions in which to ROLLBACK
 SET TRANSACTION Places a name on a transaction

Transactional commands are discussed extensively during Hour 6, "Managing Database Transactions."

An Introduction to the Database Used in This Book
Before continuing with your journey through SQL fundamentals, the next step is introducing the tables and
data that you use throughout the course of instruction for the next 23 one-hour lessons. The next two
sections provide an overview of the specific tables (the database) being used, their relationship to one
another, their structure, and examples of the data contained.

Diagram of the Tables in This Book
Figure 1.4 reveals the relationship between the tables that you use for examples, quiz questions, and
exercises in this book. Each table is identified by the table name as well as each residing field in the table.
Follow the mapping lines to compare the specific tables' relationship through a common field, in most cases
referred to as the primary key (discussed in Hour 3, "Managing Database Objects").

Figure 1.4: Table relationships for this book.

Table-Naming Standards
Table-naming standards, as well as any standard within a business, is critical to maintain control. After
studying the tables and data in the previous sections, you probably noticed that each table's suffix is _TBL.
This is a naming standard selected for use, such as what's been used at various client sites. The _TBL
simply tells you that the object is a table; there are many different types of objects in a relational database.
For example, you will see that the suffix _INX is used to identify indexes on tables in later hours. Naming
standards exist almost exclusively for overall organization and assist immensely in the administration of any
relational database. Remember, the use of a suffix is not mandatory when naming database objects.

Note You should not only adhere to the object naming syntax of any SQL
implementation, but also follow local business rules and make names descriptive
and related to the data groupings for the company.

 - 14 -

A Look at the Data
This section offers a picture of the data contained in each one of the tables used in this book. Take a few
minutes and study the data, the variations, and the relationships between the tables and the data itself.
Notice that some fields may not require data, which is specified when each table is created in the database.

EMPLOYEE_TBL

EMP_ID LAST_NAM FIRST_NAM ADDRESS CITY ST ZIP PHONE
--------- -------- ---------- --------------- ------------ -- ----- ----------
311549902 STEPHENS TINA D RR 3 BOX 17A GREENWOOD IN 47890 3178784465

442346889 PLEW LINDA C 3301 BEACON INDIANAPOLIS IN 46224 3172978990

213764555 GLASS BRANDON S 1710 MAIN ST WHITELAND IN 47885 3178984321

313782439 GLASS JACOB 3789 RIVER BLVD INDIANAPOLIS IN 45734 3175457676

220984332 WALLACE MARIAH 7889 KEYSTONE INDIANAPOLIS IN 46741 3173325986

443679012 SPURGEON TIFFANY 5 GEORGE COURT INDIANAPOLIS IN 46234 3175679007

EMPLOYEE_PAY_TBL

EMP_ID POSITION DATE_HIRE PAY_RATE DATE_LAST SALARY BONUS
--------- --------------- ----------- -------- ------------- ----------- ------
311549902 MARKETING 23-MAY-89 01-MAY-99 4000
442346889 TEAM LEADER 17-JUN-90 14.75 01-JUN-99
213764555 SALES MANAGER 14-AUG-94 01-AUG-99 3000 2000
313782439 SALESMAN 28-JUN-97 2000 1000
220984332 SHIPPER 22-JUL-96 11 01-JUL-99
Q&A

Q. If I learn SQL, will I be able to use any of the implementations that use SQL?
A.

Yes, you will be able to communicate with a database whose
implementation is ANSI SQL-compliant. If an implementation is not
completely compliant, you should be able to pick it up quickly with some
adjustments.

Q. In a client/server environment, is the personal computer the client or the
server?

A. The personal computer is known as the client, although a server can also
serve as a client.

Q. Do I have to use _TBL for each table I create?
A.

Certainly not. The use of _TBL is a standard chosen for use to name and
easily identify the tables in your database. You could spell out _TBL as
TABLE, or may want to avoid using a suffix. For example, EMPLOYEETBL
could simply be EMPLOYEE.

Q.

What happens when I am inserting a new record into a table and am
missing, for example, a new employee's phone number—and the column for
the phone number entry is NOT NULL?

A.

One of two things will happen. Because the column was specified as NOT
NULL (something has to be entered), and because you do not have the
necessary information, you could delay inserting the record until you have

 - 15 -

the phone number. Another option is to change the column from NOT NULL
to NULL, thereby allowing you to update the phone number later when the
information is received. One other option would be to insert a default fake
value, such as 1111111111, and then change it later after receiving the
correct information. Changing the column definitions is discussed in Hour 3.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. What does the acronym SQL stand for?
2. What are the six main categories of SQL commands?
3. What are the four transactional control commands?
4. What is the main difference between client/server technologies and the

mainframe?
5. If a field is defined as NULL, does that mean that something has to be entered into

that field?

Exercises
1. Identify the categories in which the following SQL commands fall:
2. CREATE TABLE
3. DELETE
4. SELECT
5. INSERT
6. ALTER TABLE
7. UPDATE

Part II: Building Your Database
Chapter List

Hour 2: Defining Data Structures
Hour 3: Managing Database Objects
Hour 4: The Normalization Process
Hour 5: Manipulating Data
Hour 6: Managing Database Transactions

443679012 SHIPPER 14-JAN-91 15 01-JAN-99

CUSTOMER_TBL

CUST_ID CUST_NAME ADDRESS CUST_CITY ST ZIP CUST_PHONE CUST_FAX
------- --------------- ---------- ------------ -- ----- ------------ --------
232 LESLIE GLEASON 798 HARDAW INDIANAPOLIS IN 47856 3175457690
 AY DR

109 NANCY BUNKER APT A 4556 BROAD RIPPLE IN 47950 3174262323
 WATERWAY

 - 16 -

345 ANGELA DOBKO RR3 BOX 76 LEBANON IN 49967 7658970090

090 WENDY WOLF 3345 GATEW INDIANAPOLIS IN 46224 3172913421
 AY DR

12 MARYS GIFT SHOP 435 MAIN S DANVILLE IL 47978 3178567221 3178523434
 T

432 SCOTTYS MARKET RR2 BOX 17 BROWNSBURG IN 45687 3178529835 3178529836
 3

333 JASONS AND DALL LAFAYETTE INDIANAPOLIS IN 46222 3172978886 3172978887
 AS GOODIES SQ MALL

21 MORGANS CANDIES 5657 W INDIANAPOLIS IN 46234 3172714398
 AND TREATS TENTH ST

43 SCHYLERS NOVELT 17 MAPLE LEBANON IN 48990 3174346758
 IES ST

287 GAVINS PLACE 9880 ROCKV INDIANAPOLIS IN 46244 3172719991 3172719992
 ILLE RD

288 HOLLYS GAMEARAM 567 US 31 WHITELAND IN 49980 3178879023

590 HEATHERS FEATHE 4090 N SHA INDIANAPOLIS IN 43278 3175456768
 RS AND THINGS DELAND AVE

610 RAGANS HOBBIES 451 GREEN PLAINFIELD IN 46818 3178393441 3178399090

560 ANDYS CANDIES RR 1 NASHVILLE IN 48756 8123239871
 BOX 34

221 RYANS STUFF 2337 S INDIANAPOLIS IN 47834 3175634402
 SHELBY ST

ORDERS_TBL

ORD_NUM CUST_ID PROD_ID QTY ORD_DATE
---------- ------- ----------------- --- ---------
56A901 232 11235 1 22-OCT-99
56A917 12 907 100 30-SEP-99
32A132 43 222 25 10-OCT-99

 - 17 -

16C17 090 222 2 17-OCT-99
18D778 287 90 10 17-OCT-99
23E934 432 13 20 15-OCT-99

PRODUCTS_TBL

PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.10
90 LIGHTED LANTERNS 14.50
15 ASSORTED COSTUMES 10.00
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

A Closer Look at What Composes a Table
The storage and maintenance of valuable data is the reason for any database's existence. You have just
viewed the data that is used to explain SQL concepts in this book. The following sections take a closer look
at the elements within a table. Remember, a table is the most common and simplest form of data storage in
a relational database.

A Field
 New Term Every table is broken up into smaller entities called fields. The fields in the PRODUCTS_TBL table
consist of PROD_ID, PROD_DESC, and COST. These fields categorize the specific information that is
maintained in a given table. A field is a column in a table that is designed to maintain specific information
about every record in the table.

A Record, or Row, of Data
 New Term A record, also called a row of data, is each individual entry that exists in a table. Looking at the
last table, PRODUCTS_TBL, consider the following first record in that table:

<C1>11235 WITCHES COSTUME 29.99
The record is obviously composed of a product identification, product description, and unit cost. For
every distinct product, there should be a corresponding record in the PRODUCTS_TBL table. A record is
a horizontal entity in a table.
 New Term A row of data is an entire record in a relational database table.

A Column
 New Term A column is a vertical entity in a table that contains all information associated with a specific field
in a table. For example, a column in the PRODUCTS_TBL having to do with the product description would
consist of the following:

WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH
FALSE PARAFFIN TEETH
LIGHTED LANTERNS
ASSORTED COSTUMES
CANDY CORN
PUMPKIN CANDY

 - 18 -

PLASTIC SPIDERS
ASSORTED MASKS
This column is based on the field PROD_DESC, the product description. A column pulls information about
a certain field from every record within a table.

The Primary Key
A primary key is a column that makes each row of data in the table unique in a relational database. The
primary key in the PRODUCTS_TBL table is PROD_ID, which is typically initialized during the table creation
process. The nature of the primary key is to ensure that all product identifications are unique, so that each
record in the PRODUCTS_TBL table has its own PROD_ID. Primary keys alleviate the possibility of a duplicate
record in a table and are used in other ways, which you read about in Hour 3.

A NULL Value
 New Term NULL is the term used to represent a missing value. A NULL value in a table is a value in a field
that appears to be blank. A field with a NULL value is a field with no value. It is very important to understand
that a NULL value is different than a zero value or a field that contains spaces. A field with a NULL value is
one that has been left blank during record creation. Notice that in the EMPLOYEE_TBL table, not every
employee has a middle initial. Those records for employees who do not have an entry for middle initial signify
a NULL value.

Additional table elements are discussed in detail during the next two hours.

Summary
You have been introduced to the standard language of SQL and have been given a brief history and
thumbnail of how the standard has evolved over the last several years. Database systems and current
technologies were also discussed, including the relational database and client/server systems, both of which
are vital to your understanding of SQL. The main SQL language components and the fact that there are
numerous players in the relational database market, and likewise, many different flavors of SQL, were
discussed. Despite ANSI SQL variations, most vendors do comply, to some extent, with the current standard,
rendering consistency across the board and forcing the development of SQL applications that are portable.

The database that will be used during your course of study was also introduced. The database, as you
have seen it so far, has consisted of a few tables, which are related to one another, and the data that
each table contains at this point (at the end of Hour 1). You should have acquired some overall
background knowledge of the fundamentals of SQL and should understand the concept of a relational
database. After a few refreshers in the Workshop for this hour, you should feel very confident about
continuing to the next hour.

Q&A

Q. If I learn SQL, will I be able to use any of the implementations that use SQL?
A.

Yes, you will be able to communicate with a database whose
implementation is ANSI SQL-compliant. If an implementation is not
completely compliant, you should be able to pick it up quickly with some
adjustments.

Q. In a client/server environment, is the personal computer the client or the
server?

A. The personal computer is known as the client, although a server can also
serve as a client.

Q. Do I have to use _TBL for each table I create?
A.

Certainly not. The use of _TBL is a standard chosen for use to name and
easily identify the tables in your database. You could spell out _TBL as
TABLE, or may want to avoid using a suffix. For example, EMPLOYEETBL
could simply be EMPLOYEE.

Q.

What happens when I am inserting a new record into a table and am
missing, for example, a new employee's phone number—and the column for
the phone number entry is NOT NULL?

A.

One of two things will happen. Because the column was specified as NOT
NULL (something has to be entered), and because you do not have the
necessary information, you could delay inserting the record until you have
the phone number. Another option is to change the column from NOT NULL

 - 19 -

to NULL, thereby allowing you to update the phone number later when the
information is received. One other option would be to insert a default fake
value, such as 1111111111, and then change it later after receiving the
correct information. Changing the column definitions is discussed in Hour 3.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. What does the acronym SQL stand for?
2. What are the six main categories of SQL commands?
3. What are the four transactional control commands?
4. What is the main difference between client/server technologies and the

mainframe?
5. If a field is defined as NULL, does that mean that something has to be entered into

that field?

Exercises
1. Identify the categories in which the following SQL commands fall:
2. CREATE TABLE
3. DELETE
4. SELECT
5. INSERT
6. ALTER TABLE
7. UPDATE

Part II: Building Your Database
Chapter List

Hour 2: Defining Data Structures
Hour 3: Managing Database Objects
Hour 4: The Normalization Process
Hour 5: Manipulating Data
Hour 6: Managing Database Transactions

Hour 2: Defining Data Structures
Overview

In this second hour, you learn more about the data you viewed at the end of Hour 1. You learn the
characteristics of the data itself and how such data is stored in a relational database. There are several data
types, as you'll soon discover.

Hour 2: Defining Data Structures
Overview

In this second hour, you learn more about the data you viewed at the end of Hour 1. You learn the
characteristics of the data itself and how such data is stored in a relational database. There are several data
types, as you'll soon discover.

 - 20 -

Basic Data Types
The following sections discuss the basic data types supported by ANSI SQL. Data types are characteristics
of the data itself, whose attributes are placed on fields within a table. For example, you can specify that a
field must contain numeric values, disallowing the entering of alphanumeric strings. After all, you would not
want to enter alphabetic characters in a field for a dollar amount.

Note Every implementation of SQL seems to have its own specific data types. The use
of implementation-specific data types is necessary to support the philosophy of
each implementation on how to handle the storage of data. However, the basics
are the same among all implementations.

The very basic data types, as with most other languages, are
 Character strings
 Numeric strings
 Date and time values

Fixed-Length Characters
 New Term Constant characters, those strings that always have the same length, are stored using a fixed-
length data type. The following is the standard for an SQL fixed-length character:

CHARACTER(n)
n represents a number identifying the allocated, or maximum length, of the particular field with this
definition.
Some implementations of SQL use the CHAR data type to store fixed-length data. Alphanumeric data
can be stored in this data type. An example of a constant length data type would be for a state
abbreviation because all state abbreviations are two characters.
Spaces are normally used to fill extra spots when using a fixed-length data type; if a field's length was
set to 10 and data entered filled only five places, the remaining five spaces are recorded as spaces.
The padding of spaces ensures that each value in a field is a fixed length.

Warning Be careful not to use a fixed-length data type for fields that may contain
varying-length values, such as an individual's name. If you use the fixed-
length data type inappropriately, problems such as the waste of available
space and the inability to make accurate comparisons between data will
eventually be encountered.

Variable Characters
 New Term SQL supports the use of varying-length strings,strings whose length is not constant for all data.
The following is the standard for an SQL varying-length character:

CHARACTER VARYING(n)
n represents a number identifying the allocated, or maximum length, of the particular field with this
definition.
Common data types for variable-length character values are the VARCHAR and VARCHAR2 data types.
VARCHAR is the ANSI standard, which Microsoft SQL Server uses; VARCHAR2 is used by Oracle and
should be used in Oracle, because VARCHAR's usage in the future may change. The data stored can be
alphanumeric.
Remember that fixed-length data types typically pad spaces to fill in allocated places not used by the
field. The varying-length data type does not work this way. For instance, if the allocated length of a
varying-length field is 10, and a string of five characters is entered, the total length of that particular
value is only 5. Spaces are not used to fill unused places in a column.

Tip Always use the varying-length data type for non-constant character strings to save
database space.

Numeric Values
Numeric values are stored in fields that are defined as some type of number, typically referred to as NUMBER,
INTEGER, REAL, DECIMAL, and so on.

The following are the standards for SQL numeric values:
BIT(n)
BIT VARYING(n)
DECIMAL(p,s)

 - 21 -

INTEGER
SMALLINT
FLOAT(p)
REAL(s)
DOUBLE PRECISION(P)
p represents a number identifying the allocated, or maximum length, of the particular field for each
appropriate definition.
s is a number to the right of the decimal point, such as 34.ss.
A common numeric data type in SQL implementations is NUMBER, which accommodates the direction
for numeric values provided by ANSI. Numeric values can be stored as zero, positive, negative, fixed,
and floating-point numbers. The following is an example using NUMBER:
NUMBER(5)
This example restricts the maximum value entered in a particular field to 99999.

Decimal Values
Decimal values are numeric values that include the use of a decimal point. The standard for a decimal in
SQL follows, where the p is the precision and the s is the decimal's scale:

DECIMAL(p,s)
 New Term The precision is the total length of the numeric value. In a numeric defined DECIMAL(4,2),
the precision is 4, which is the total length allocated for a numeric value.
 New Term The scale is the number of digits to the right of the decimal point. The scale is 2 in the
previous DECIMAL(4,2) example.
34.33 inserted into a DECIMAL(3,1) is typically rounded to 34.3.
If a numeric value was defined as the following data type, the maximum value allowed would be 99.99:
DECIMAL(4,2)
 New Term The precision is 4, which represents the total length allocated for an associated value. The
scale is 2, which represents the number of places, or bytes, reserved to the right side of the decimal
point. The decimal point itself does not count as a character.
Allowed values for a column defined as DECIMAL(4,2) include the following:

12
12.4
12.44
12.449
The last numeric value, 12.449, is rounded off to 12.45 upon input into the column.

Integers
 New Term An integer is a numeric value that does not contain a decimal, only whole numbers (both positive
and negative).

Valid integers include the following:
1
0
-1
99
-99
199

Floating-Point Decimals
 New Term Floating-point decimals are decimal values whose precision and scale are variable lengths and
virtually without limit. Any precision and scale is acceptable. The REAL data type designates a column with
single-precision, floating-point numbers. The DOUBLE PRECISION data type designates a column that
contains double-precision, floating-point numbers. To be considered a single-precision floating point, the
precision must be between 1 and 21 inclusive. To be considered a double-precision floating point, the
precision must be between 22 and 53 inclusive. The following are examples of the FLOAT data type:
FLOAT
FLOAT(15)
FLOAT(50)

 - 22 -

Dates and Time
Date and time data types are quite obviously used to keep track of information concerning dates and time.
Standard SQL supports what are called DATETIME data types, which include the following specific data
types:
DATE
TIME
INTERVAL
TIMESTAMP
The elements of a DATETIME data type consist of the following:

YEAR
MONTH
DAY
HOUR
MINUTE
SECOND

Note The SECOND element can also be broken down to fractions of a second. The
range is from 00.000 to 61.999, although some implementations of SQL may
not support this range.

Be aware that each implementation of SQL may have its own customized data type for dates and times.
The previous data types and elements are standards to which each SQL vendor should adhere, but be
advised that most implementations have their own data type for date values, varying in both appearance
and the way date information is actually stored internally.

A length is not normally specified for a date data type. Later in this hour, you learn more about dates,
how date information is stored in some implementations, how to manipulate dates and times using
conversion functions, and study practical examples of how dates and time are used in the real world.

Literal Strings
 New Term A literal string is a series of characters, such as a name or a phone number, that is explicitly
specified by a user or program. Literal strings consist of data with the same attributes as the previously
discussed data types, but the value of the string is known; the value of a column itself is usually unknown,
because there is typically a different value for a column associated with each row of data in a table.

You do not actually specify data types with literal strings—you simply specify the string. Some examples
of literal strings follow:

'Hello'
45000
"45000"
3.14
'November 1, 1997'
The alphanumeric strings are enclosed by single quotation marks, whereas the number value 45000 is
not. Also notice that the second numeric value of 45000 is enclosed by quotation marks. Generally
speaking, character strings require quotation marks, whereas numeric strings don't. You see later how
literal strings are used with database queries.
NULL Data Types

As you should know from Hour 1, "Welcome to the World of SQL," a NULL value isa missing value or a
column in a row of data that has not been assigned a value. NULL values are used in nearly all parts of SQL,
including the creation of tables, search conditions for queries, and even in literal strings.

The following are two methods for referencing a NULL value:
 NULL (the keyword NULL itself)
 '' (single quotation marks with nothing in between)

The following does not represent a NULL value, but a literal string containing the characters N-U-L-L:
'NULL'
BOOLEAN Values

A BOOLEAN value is a value of either TRUE, FALSE, or NULL. BOOLEAN values are used to make data
comparisons. For example, when criteria are specified for a query, each condition evaluates to either a
TRUE, FALSE, or NULL. If the BOOLEAN value of TRUE is returned by all conditions in a query, data is
returned. If a BOOLEAN value of FALSE or NULL is returned, data may not be returned.

 - 23 -

Consider the following example:
WHERE NAME = 'SMITH'
This line might be a condition found in a query. The condition is evaluated for every row of data in the
table that is being queried. If the value of NAME is SMITH for a row of data in the table, the condition
returns the value TRUE, thereby returning the data associated with that record.

User-Defined Types
 New Term A user-defined type is a data type that is defined by the user. User-defined types allow users to
customize their own data types based on existing data types. The CREATE TYPE statement is used to create
a user-defined type.

For example, you can create a type as follows:
CREATE TYPE PERSON AS OBJECT
(NAME VARCHAR2(30),
 SSN VARCHAR2(9));

You can reference your user-defined type as follows:
CREATE TABLE EMP_PAY
(EMPLOYEE PERSON,
 SALARY NUMBER(10,2),
 HIRE_DATE DATE);
Notice that the data type referenced for the first column EMPLOYEE is PERSON. PERSON is the user-
defined type you created in the first example.

Domains
 New Term A domain is a set of valid data types that can be used. A domain is associated with a data type,
so that only certain data is accepted. After a domain is created, you can add constraints to the domain. The
domain is used like the user-defined type.

You can create a domain as follows:
CREATE DOMAIN MONEY_D AS NUMBER(8,2);

You can add constraints to your domain as follows:
ALTER DOMAIN MONEY_D
ADD CONSTRAINT MONEY_CON1
CHECK (VALUE > 5);

You can reference the domain as follows:
CREATE TABLE EMP_PAY
(EMP_ID NUMBER(9),
 EMP_NAME VARCHAR2(30),
 PAY_RATE MONEY_D);

Note Note that some of the data types mentioned during this hour may not be available
by name in the implementation of SQL that you are using. Data types are often
named differently among implementations of SQL, but the concept behind each
data type remains. Most, if not all, data types are supported by most relational
databases.

Summary

There are several data types available with SQL. If you have programmed in other languages, you probably
recognize many of the data types mentioned. Data types allow different types of data to be stored in the
database, ranging from simple characters to decimal points to date and time. The concept of data types is
the same in all languages, whether programming in a third-generation language such as C and passing

 - 24 -

variables or using a relational database implementation and coding in SQL. Of course, each implementation
has its own names for standard data types, but they basically work the same.

Care must be taken in planning for both the near and distant future when deciding on data types,
lengths, scales, and precisions in which to store your data. Business rules and how you want the end
user to access the data are other factors in deciding on specific data types. You should know the nature
of the data itself and how data in the database is related to assign proper data types.

Q&A

Q. How is it that I can enter numbers such as a person's Social Security
number in fields defined as character fields?

A.

Numeric values are still alphanumeric, which are allowed in character data
types. Typically, the only data stored as numeric values are values used in
computations. However, it may be helpful for some to define all numeric
fields with a numeric data type to help control the data entered in that field.

Q. I still do not understand the difference between constant-length and varying-
length data types. Can you explain?

A.

Say you have an individual's last name defined as a constant data type with
a length of 20 bytes. Suppose the individual's name is Smith. When the data
is inserted into the table, 20 bytes are taken, 5 for the name and 15 for the
extra spaces (remember that this is a constant-length data type). If you use
a varying-length data type with a length of 20 and inserted Smith, only 5
bytes of space are taken.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. You may refer to Appendix C, "Answers to Quizzes and
Exercises," for answers.

Quiz
1. True or false: An individual's Social Security number can be any of the following

data types: constant-length character, varying-length character, numeric.
2. True or false: The scale of a numeric value is the total length allowed for values.
3. Do all implementations use the same data types?
4. What are the precision and scale of the following?
5. DECIMAL(4,2)
6. DECIMAL(10,2)

 DECIMAL(14,1)
7. Which numbers could be inserted into a column whose data type is

DECIMAL(4,1)?
a. 16.2
b. 116.2
c. 16.21
d. 1116.2
e. 1116.21

Exercises
1. Take the following column titles, assign them to a data type, and decide on the

proper length.
a. ssn
b. state
c. city
d. phone_number
e. zip
f. last_name

 - 25 -

g. first_name
h. middle_name
i. salary
j. hourly_pay_rate
k. date_hired

2. Take the same column titles and decide whether they should be NULL or NOT
NULL, realizing that in some cases where a column would normally be NOT
NULL, the column could be NULL or vice-versa, depending on the application.

a. ssn
b. state
c. city
d. phone_number
e. zip
f. last_name
g. first_name
h. middle_name
i. salary
j. hourly_pay_rate
k. date_hired

Hour 3: Managing Database Objects
Overview

 New Term In this hour, you learn about database objects: what they are, how they act, how they are stored,
and how they relate to one another. Database objects are the underlying backbone of the relational
database. These objects are logical units within the database that are used to store information, and are
referred to as the back-end database. The majority of the instruction during this hour revolves around the
table, but keep in mind that there are other database objects, many of which are discussed in later hours of
study.

What Are Database Objects?
A database object is any defined object in a database that is used to store or reference data. Some
examples of database objects include tables, views, clusters, sequences, indexes, and synonyms. The table
is this hour's focus, because it is the simplest form of data storage in a relational database.

What Is a Schema?
 New Term A schema is a collection of database objects (as far as this hour is concerned—tables)
associated with one particular database username. This username is called the schema owner, or the owner
of the related group of objects. You may have one or multiple schemas in a database. Basically, any user
who creates an object has just created his or her own schema. A schema can consist of a single table and
has no limits to the number of objects that it may contain, unless restricted by a specific database
implementation.

Say you have been issued a database username and password by the database administrator. Your
username is USER1. Suppose you log on to the database and then create a table called
EMPLOYEE_TBL. Your table's actual name is USER1.EMPLOYEE_TBL. The schema name for that table
is USER1, which is also the owner of that table. You have just created the first table of a schema.

The good thing about schemas is that when you access a table that you own (in your own schema), you
do not have to refer to the schema name. For instance, you could refer to your table as either one of the
following:
EMPLOYEE_TBL
USER1.EMPLOYEE_TBL

The first option is preferred because it requires fewer keystrokes. If another user were to query one of
your tables, the user would have to specify the schema, as follows:
USER1.EMPLOYEE_TBL

 - 26 -

In Hour 20, "Creating and Using Views and Synonyms," you learn about the distribution of permissions
so that other users can access your tables. You also learn about synonyms, which allow you to give a
table another name so you do not have to specify the schema name when accessing a table. Figure 3.1
illustrates two schemas in a relational database.

Figure 3.1: Schemas in a database.

There are, in Figure 3.1, two user accounts in the database that own tables: USER1 and USER2. Each
user account has its own schema. Some examples for how the two users can access their own tables
and tables owned by the other user follow:
USER1 accesses own table1: TABLE1

USER1 accesses own test: TEST

USER1 accesses USER2's table10: USER2.TABLE10

USER1 accesses USER2's test: USER2.TEST

Both users have a table called TEST. Tables can have the same names in a database as long as they
belong to different schemas. If you look at it this way, table names are always unique in a database,
because the schema owner is actually part of the table name. For instance, USER1.TEST is different
than USER2.TEST. If you do not specify a schema with the table name when accessing tables in a
database, the database server looks for a table that you own by default. That is, if USER1 tries to
access TEST, the database server looks for a USER1-owned table named TEST before it looks for other
objects owned by USER1, such as synonyms to tables in another schema. Hour 21, "Working with the
System Catalog," helps you fully understand how synonyms work.

Note Every database server has rules concerning how you can name objects and
elements of objects, such as field names. You must check your particular
implementation for the exact naming conventions or rules.

A Table: The Primary Storage for Data

The table is the primary storage object for data in a relational database. A table consists of row(s) and
column(s), both of which hold the data. A table takes up physical space in a database and can be permanent
or temporary.

Fields and Columns
A field, also called a column in a relational database, is part of a table that is assigned a specific data type; a
field should be named to correspond with the type of data that will be entered into that column. Columns can
be specified as NULL or NOT NULL, meaning that if a column is NOT NULL, something must be entered. If a
column is specified as NULL, nothing has to be entered.

Every database table must consist of at least one column. Columns are those elements within a table
that hold specific types of data, such as a person's name or address. For example, a valid column in a
customer table may be the customer's name.
Generally, a name must be one continuous string. An object name must typically be one continuous
string and can be limited to the number of characters used according to each implementation of SQL. It
is typical to use underscores with names to provide separations between characters. For example, a
column for the customer's name can be named CUSTOMER_NAME instead of CUSTOMERNAME.

Note Be sure to check your implementation for rules when naming objects and other
database elements.

Rows
A row is a record of data in a database table. For example, a row of data in a customer table might consist of
a particular customer's identification number, name, address, phone number, fax number, and so on. A row

 - 27 -

is comprised of fields that contain data from one record in a table. A table can contain as little as one row of
data and up to as many as millions of rows of data or records.

The CREATE TABLE Statement
The CREATE TABLE statement is obviously used to create a table. Although the very act of creating a table
is quite simple, much time and effort should be put into planning table structures before the actual execution
of the CREATE TABLE statement.

Some elementary questions need to be answered when creating a table:
 What type of data will be entered into the table?
 What will be the table's name?
 What column(s) will compose the primary key?
 What names shall be given to the columns (fields)?
 What data type will be assigned to each column?
 What will be the allocated length for each column?
 Which columns in a table require data?

After these questions are answered, the actual CREATE TABLE statement is simple.

The basic syntax to create a table is as follows:
CREATE TABLE TABLE_NAME
(FIELD1 DATA TYPE [NOT NULL],
 FIELD2 DATA TYPE [NOT NULL],
 FIELD3 DATA TYPE [NOT NULL],
 FIELD4 DATA TYPE [NOT NULL],
 FIELD5 DATA TYPE [NOT NULL]);

Note In this hour's examples, you use the popular data types CHAR (constant-length
character), VARCHAR (variable-length character), NUMBER (numeric values,
decimal and non-decimal), and DATE (date and time values).

Create a table called EMPLOYEE_TBL in the following example:
Input
CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL,
EMP_NAME VARCHAR2(40) NOT NULL,
EMP_ST_ADDR VARCHAR2(20) NOT NULL,
EMP_CITY VARCHAR2(15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP NUMBER(5) NOT NULL,
EMP_PHONE NUMBER(10) NULL,
EMP_PAGER NUMBER(10) NULL);
Eight different columns make up this table. Notice the use of the underscore character to break the
column names up into what appears to be separate words (EMPLOYEE ID is stored as EMP_ID). Each
column has been assigned a specific data type and length, and by using the NULL/NOT NULL
constraint, you have specified which columns require values for every row of data in the table. The
EMP_PHONE is defined as NULL, meaning that NULL values are allowed in this column because there
may be individuals without a telephone number. The information concerning each column is separated
by a comma, with parentheses surrounding all columns (a left parenthesis before the first column and a
right parenthesis following the information on the last column).
A semicolon is the last character in the previous statement. Most SQL implementations have some
character that terminates a statement or submits a statement to the database server. Oracle uses the
semicolon. Transact-SQL uses the GO statement. This book uses the semicolon.

Each record, or row of data, in this table would consist of the following:
EMP_ID, EMP_NAME, EMP_ST_ADDR, EMP_CITY, EMP_ST, EMP_ZIP, EMP_PHONE,
EMP_PAGER
In this table, each field is a column. The column EMP_ID could consist of one employee's identification
number or many employees' identification numbers, depending on the requirements of a database

 - 28 -

query or transactions. The column is a vertical entity in a table, whereas a row of data is a horizontal
entity.

Note NULL is the default value for a column; therefore, it does not have to be entered in
the CREATE TABLE statement.

STORAGE Clause
Some form of a STORAGE clause is available in many relational database implementations of SQL. The
STORAGE clause in a CREATE TABLE statement is used for initial table sizing and is usually done at table
creation. The syntax of a STORAGE clause as used in one implementation is shown in the following example:

CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL,
EMP_NAME VARCHAR(40) NOT NULL,
EMP_ST_ADDR VARCHAR(20) NOT NULL,
EMP_CITY VARCHAR(15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP NUMBER(5) NOT NULL,
EMP_PHONE NUMBER(10) NULL,
EMP_PAGER NUMBER(10) NULL)
STORAGE
 (INITIAL 3K
 NEXT 2K);
In some implementations, there are several options available in the STORAGE clause. INITIAL
allocates a set amount of space in bytes, kilobytes, and so on, for the initial amount of space to be used
by a table. The NEXT part of the STORAGE identifies the amount of additional space that should be
allocated to the table if it should grow beyond the space allocated for the initial allocation. You find that
there are other options available with the STORAGE clause, and remember that these options vary from
implementation to implementation. If the STORAGE clause is omitted from most major implementations,
there are default storage parameters invoked, which may not be the best for the application.
Notice the neatness of the CREATE TABLE statement. This is for ease of reading and error resolution.
Indentation has been used to help.

Note The STORAGE clause differs between relational database implementations of
SQL. The previous example used Oracle's STORAGE clause, which was added to
the CREATE TABLE statement. Remember that the ANSI standard for SQL is just
that, a standard. The standard is not a language itself, but guidelines on how
vendors should develop their SQL implementation. You also find that data types
differ between implementations. Most issues concerning the actual storage and
processing of data are implementation-specific.

Naming Conventions
When selecting names for objects, specifically tables and columns, the name should reflect the data that is to
be stored. For example, the name for a table pertaining to employee information could be named
EMPLOYEE_TBL. Names for columns should follow the same logic. When storing an employee's phone
number, an obvious name for that column would be PHONE_NUMBER.

Note Check your particular implementation for name length limits and characters that
are allowed; they could differ from implementation to implementation.

The ALTER TABLE Command
A table can be modified through the use of the ALTER TABLE command after that table's creation. You can
add column(s), drop column(s), change column definitions, add and drop constraints, and, in some
implementations, modify table STORAGE values. The standard syntax for the ALTER TABLE command
follows:

ALTER TABLE TABLE_NAME [MODIFY] [COLUMN COLUMN_NAME][DATATYPE|NULL NOT NULL]
[RESTRICT|CASCADE]
 [DROP] [CONSTRAINT CONSTRAINT_NAME]
 [ADD] [COLUMN] COLUMN DEFINITION

 - 29 -

Modifying Elements of a Table
 New Term The attributes of a column refer to the rules and behavior of data in a column. You can modify
the attributes of a column with the ALTER TABLE command. The word attributes here refers to the following:

 The data type of a column
 The length, precision, or scale of a column
 Whether the column can contain NULL values

The following example uses the ALTER TABLE command on EMPLOYEE_TBL to modify the attributes of
the column EMP_ID:
Input
ALTER TABLE EMPLOYEE_TBL MODIFY (EMP_ID VARCHAR2(10));
Output
Table altered.
The column was already defined as data type VARCHAR2 (a varying-length character), but you
increased the maximum length from 9 to 10.

Adding Mandatory Columns to a Table
One of the basic rules for adding columns to an existing table is that the column you are adding cannot be
defined as NOT NULL if data currently exists in the table. NOT NULL means that a column must contain
some value for every row of data in the table, so if you are adding a column defined as NOT NULL, you are
contradicting the NOT NULL constraint right off the bat if the preexisting rows of data in the table do not have
values for the new column.

There is, however, a way to add a mandatory column to a table:
1. Add the column and define it as NULL (the column does not have to contain a

value).
2. Insert a value into the new column for every row of data in the table.
3. After ensuring that the column contains a value for every row of data in the

table, you can alter the table to change the column's attribute to NOT NULL.

Modifying Columns
There are many things to take into consideration when modifying existing columns of a table.

Common rules for modifying columns:
 The length of a column can be increased to the maximum length of the given data

type.
 The length of a column can be decreased only if the largest value for that column

in the table is less than or equal to the new length of the column.
 The number of digits for a number data type can always be increased.
 The number of digits for a number data type can be decreased only if the value

with the most number of digits for that column is less than or equal to the new
number of digits specified for the column.

 The number of decimal places for a number data type can either be increased or
decreased.

 The data type of a column can normally be changed.
Some implementations may actually restrict you from using certain ALTER TABLE options. For
example, you may not be allowed to drop columns from a table. To do this, you would have to drop the
table itself, and then rebuild the table with the desired columns. You could run into problems by
dropping a column in one table that is dependent on a column in another table, or a column that is
referenced by a column in another table. Be sure to refer to your specific implementation
documentation.

Creating a Table from an Existing Table
A copy of an existing table can be created using a combination of the CREATE TABLE statement and the
SELECT statement. The new table has the same column definitions. All columns or specific columns can be
selected. New columns that are created via functions or a combination of columns automatically assume the
size necessary to hold the data. The basic syntax for creating a table from another table is as follows:

CREATE TABLE NEW_TABLE_NAME AS
SELECT [*|COLUMN1, COLUMN2]

 - 30 -

FROM TABLE_NAME
[WHERE]
Notice some new keywords in the syntax, particularly the SELECT keyword. SELECT is a database
query, and is discussed in more detail later. However, it is important to know that you can create a table
based on the results from a query.
First, do a simple query to view the data in the PRODUCTS_TBL table.
Input
SELECT * FROM PRODUCTS_TBL;
Output
PROD_ID PROD_DESC COST
---------- ----------------------------- ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

Note SELECT * selects data from all fields in the given table. The * represents a
complete row of data, or record, in the table.

Next, create a table called PRODUCTS_TMP based on the previous query:
Input
CREATE TABLE PRODUCTS_TMP AS
SELECT * FROM PRODUCTS_TBL;
Output
Table created.
Now, if you run a query on the PRODUCTS_TMP table, your results appear the same as if you had
selected data from the original table.
Input
SELECT *
FROM PRODUCTS_TMP;
Output
PROD_ID PROD_DESC COST
---------- ----------------------------- ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

Note When creating a table from an existing table, the new table takes on the same
STORAGE attributes as the original table.

 - 31 -

Dropping Tables
Dropping a table is actually one of the easiest things to do. When the RESTRICT option is used and the table
is referenced by a view or constraint, the DROP statement returns an error. When the CASCADE option is
used, the drop succeeds and all referencing views and constraints are dropped. The syntax to drop a table
follows:

DROP TABLE TABLE_NAME [RESTRICT|CASCADE]

In the following example, you drop the table that you just created:
Input
DROP TABLE PRODUCTS_USER1.TMP;
Output
Table dropped.

Warning Whenever dropping a table, be sure to specify the schema name or owner of
the table before submitting your command. You could drop the incorrect
table. If you have access to multiple user accounts, ensure that you are
connected to the database through the correct user account before dropping
tables.

Integrity Constraints

Integrity constraints are used to ensure accuracy and consistency of data in a relational database. Data
integrity is handled in a relational database through the concept of referential integrity. There are many types
of integrity constraints that play a role in referential integrity (RI).

Primary Key Constraints
 New Term Primary key is the term used to identify one or more columns in a table that make a row of data
unique. Although the primary key typically consists of one column in a table, more than one column can
comprise the primary key. For example, either the employee's Social Security number or an assigned
employee identification number is the logical primary key for an employee table. The objective is for every
record to have a unique primary key or value for the employee's identification number. Because there is
probably no need to have more than one record for each employee in an employee table, the employee
identification number makes a logical primary key. The primary key is assigned at table creation.

The following example identifies the EMP_ID column as the PRIMARY KEY for the EMPLOYEES table:
CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL PRIMARY KEY,
EMP_NAME VARCHAR2(40) NOT NULL,
EMP_ST_ADDR VARCHAR2(20) NOT NULL,
EMP_CITY VARCHAR2(15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP NUMBER(5) NOT NULL,
EMP_PHONE NUMBER(10) NULL,
EMP_PAGER NUMBER(10) NULL);

This method of defining a primary key is accomplished during table creation. The primary key in this
case is an implied constraint. You can also specify a primary key explicitly as a constraint when setting
up a table, as follows:
CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL,
EMP_NAME VARCHAR2(40) NOT NULL,
EMP_ST_ADDR VARCHAR2(20) NOT NULL,
EMP_CITY VARCHAR2(15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP NUMBER(5) NOT NULL,

 - 32 -

EMP_PHONE NUMBER(10) NULL,
EMP_PAGER NUMBER(10) NULL,
PRIMARY KEY (EMP_ID));
The primary key constraint in this example is defined after the column comma list in the CREATE TABLE
statement.

A primary key that consists of more than one column can be defined by either of the following methods:
CREATE TABLE PRODUCTS
(PROD_ID VARCHAR2(10) NOT NULL,
 VEND_ID VARCHAR2(10) NOT NULL,
 PRODUCT VARCHAR2(30) NOT NULL,
 COST NUMBER(8,2) NOT NULL,
PRIMARY KEY (PROD_ID, VEND_ID));
ALTER TABLE PRODUCTS
ADD CONSTRAINT PRODUCTS_PK PRIMARY KEY (PROD_ID, VEND_ID);

Unique Constraints
 New Term A unique column constraint in a table is similar to a primary key in that the value in that column
for every row of data in the table must have a unique value. While a primary key constraint is placed on one
column, you can place a unique constraint on another column even though it is not actually for use as the
primary key.

Study the following example:
CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL PRIMARY KEY,
EMP_NAME VARCHAR2(40) NOT NULL,
EMP_ST_ADDR VARCHAR2(20) NOT NULL,
EMP_CITY VARCHAR2(15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP NUMBER(5) NOT NULL,
EMP_PHONE NUMBER(10) NULL UNIQUE,
EMP_PAGER NUMBER(10) NULL);
The primary key in this example is EMP_ID, meaning that the employee identification number is the
column that is used to ensure that every record in the table is unique. The primary key is a column that
is normally referenced in queries, particularly to join tables. The column EMP_PHONE has been
designated as a UNIQUE value, meaning that no two employees can have the same telephone number.
There is not a lot of difference between the two, except that the primary key is used to provide an order
to data in a table and, in the same respect, join related tables.

Foreign Key Constraints
 New Term A foreign key is a column in a child table that references a primary key in the parent table. A
foreign key constraint is the main mechanism used to enforce referential integrity between tables in a
relational database. A column defined as a foreign key is used to reference a column defined as a primary
key in another table.

Study the creation of the foreign key in the following example:
CREATE TABLE EMPLOYEE_PAY_TBL
(EMP_ID CHAR(9) NOT NULL,
POSITION VARCHAR2(15) NOT NULL,
DATE_HIRE DATE NULL,
PAY_RATE NUMBER(4,2) NOT NULL,

 - 33 -

DATE_LAST_RAISE DATE NULL,
CONSTRAINT EMP_ID_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL (EMP_ID));
The EMP_ID column in this example has been designated as the foreign key for the
EMPLOYEE_PAY_TBL table. This foreign key, as you can see, references the EMP_ID co-lumn in the
EMPLOYEE_TBL table. This foreign key ensures that for every EMP_ID in the EMPLOYEE_PAY_TBL,
there is a corresponding EMP_ID in the EMPLOYEE_TBL. This is called a parent/child relationship. The
parent table is the EMPLOYEE_TBL table, and the child table is the EMPLOYEE_PAY_TBL table. Study
Figure 3.2 for a better understanding of the parent table/child table relationship.

Figure 3.2: The parent/child table relationship.

In this figure, the EMP_ID column in the child table references the EMP_ID column in the parent table. In
order for a value to be inserted for EMP_ID in the child table, there must first exist a value for EMP_ID in
the parent table. Likewise, for a value to be removed for EMP_ID in the parent table, all corresponding
values for EMP_ID must first be removed from the child table. This is how referential integrity works.
A foreign key can be added to a table using the ALTER TABLE command, as shown in the following
example:
ALTER TABLE EMPLOYEE_PAY_TBL
ADD CONSTRAINT ID_FK FOREIGN KEY (EMP_ID)
REFERENCES EMPLOYEE_TBL (EMP_ID);

Note The options available with the ALTER TABLE command differ among different
implementations of SQL, particularly when dealing with constraints.In addition,
the actual use and definitions of constraints also vary, but the concept of
referential integrity should be the same with all relational databases.

NOT NULL Constraints
Previous examples use the keywords NULL and NOT NULL listed on the same line as each column and after
the data type. NOT NULL is a constraint that you can place on a table's column. This constraint disallows the
entrance of NULL values into a column; in other words, data is required in a NOT NULL column for each row
of data in the table. NULL is generally the default for a column if NOT NULL is not specified, allowing NULL
values in a column.

Using Check (CHK) Constraints

Check constraints can be utilized to check the validity of data entered into particular table columns. Check
constraints are used to provide back-end database edits, although edits are commonly found in the front-end
application as well. General edits restrict values that can be entered into columns or objects, whether within
the database itself or on a front-end application. The check constraint is a way of providing another
protective layer for the data.

The following example illustrates the use of a check constraint:
CREATE TABLE EMPLOYEE_TBL
(EMP_ID CHAR(9) NOT NULL,
EMP_NAME VARCHAR2(40) NOT NULL,
EMP_ST_ADDR VARCHAR2(20) NOT NULL,
EMP_CITY VARCHAR2(15) NOT NULL,
EMP_ST CHAR(2) NOT NULL,
EMP_ZIP NUMBER(5) NOT NULL,
EMP_PHONE NUMBER(10) NULL,
EMP_PAGER NUMBER(10) NULL),

 - 34 -

PRIMARY KEY (EMP_ID),
CONSTRAINT CHK_EMP_ZIP CHECK (EMP_ZIP = '46234');
The check constraint in this table has been placed on the EMP_ZIP column, ensuring that all employees
entered into this table have a ZIP code of '46234'. Perhaps that is a little restricting. Nevertheless, you
can see how it works.

If you wanted to use a check constraint to verify that the ZIP code is within a list of values, your
constraint definition could look like the following:
CONSTRAINT CHK_EMP_ZIP CHECK (EMP_ZIP in ('46234','46227','46745'));

If there is a minimum pay rate that can be designated for an employee, you could have a constraint that
looks like the following:
CREATE TABLE EMPLOYEE_PAY_TBL
(EMP_ID CHAR(9) NOT NULL,
POSITION VARCHAR2(15) NOT NULL,
DATE_HIRE DATE NULL,
PAY_RATE NUMBER(4,2) NOT NULL,
DATE_LAST_RAISE DATE NULL,
CONSTRAINT EMP_ID_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL (EMP_ID),
CONSTRAINT CHK_PAY CHECK (PAY_RATE > 12.50));

In this example, any employee entered in this table must be paid more than $12.50 an hour. You can
use just about any condition in a check constraint, as you can with an SQL query. You learn more about
these conditions in later hours.

Dropping Constraints
Any constraint that you have defined can be dropped using the ALTER TABLE command with the DROP
CONSTRAINT option. For example, to drop the primary key constraint in the EMPLOYEES table, you can use
the following command:

Input
ALTER TABLE EMPLOYEES DROP CONSTRAINT EMPLOYEES_PK;
Output
Table altered.

Some implementations may provide shortcuts for dropping certain constraints. For example, to drop the
primary key constraint for a table in Oracle, you can use the following command:
Input
ALTER TABLE EMPLOYEES DROP PRIMARY KEY;
Output
Table altered.

Note Some implementations allow you to disable constraints. Instead of permanently
dropping a constraint from the database, you may want to temporarily disable the
constraint, and then enable it later.

Summary

You have learned a little about database objects in general, but have specifically learned about the table.
The table is the simplest form of data storage in a relational database. Tables contain groups of logical
information, such as employee, customer, or product information. A table is composed of various columns,
with each column having attributes; those attributes mainly consist of data types and constraints, such as
NOT NULL values, primary keys, foreign keys, and unique values.

You learned the CREATE TABLE command and options, such as storage parameters, that may be
available with this command. You have also learned how to modify the structure of existing tables using
the ALTER TABLE command. Although the process of managing database tables may not be the most
basic process in SQL, it is our philosophy that if you first learn the structure and nature of tables, you
more easily grasp the concept of accessing the tables, whether through data manipulation operations or

 - 35 -

database queries. In later hours, you learn about the management of other objects in SQL, such as
indexes on tables and views.

Q&A

Q. When I name a table that I am creating, is it necessary to use a suffix such
as _TBL?

A.

Absolutely not. You do not have to use anything. For example, a table to
hold employee information could be named similar to the following, or
anything else that would refer to what type of data is to be stored in that
particular table:

EMPLOYEE
EMP_TBL
EMPLOYEE_TBL
EMPLOYEE_TABLE
WORKER

Q. Why is it so important to use the schema name when dropping a table?
A.

Here's a true story about a new DBA that dropped a table: A programmer
had created a table under his schema with the same name as a production
table. That particular programmer left the company. The programmer's
database account was being deleted from the database, but the DROP USER
statement returned an error due to the fact that outstanding objects were
owned by the programmer. After some investigation it was determined that
the programmer's table was not needed, so a DROP TABLE statement was
issued.

It worked like a charm—but the problem was that the DBA was logged
in as the production schema when the DROP TABLE statement was
issued. The DBA should have specified a schema name, or owner, for
the table to be dropped. Yes, the wrong table in the wrong schema was
dropped. It took approximately eight hours to restore the production
database.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. Will the following CREATE TABLE statement work? If not, what needs to be done

to correct the problem(s)?

Create table EMPLOYEE_TABLE as:
 (SSN NUMBER(9) NOT NULL,
 LAST_NAME VARCHAR2(20) NOT NULL,
 FIRST_NAME VARCHAR2(20) NOT NULL,
 MIDDLE_NAME VARCHAR2(20) NOT NULL,
 ST ADDRESS VARCHAR2(30) NOT NULL,
 CITY CHAR(20) NOT NULL,
 STATE CHAR2) NOT NULL,
 ZIP NUMBER(4) NOT NULL,
 DATE HIRED DATE)
 STORAGE
 (INITIAL 3k,
 NEXT 1K);

2. Can you drop a column from a table?
3. What happens if you do not include the STORAGE clause in the CREATE TABLE

statement?

 - 36 -

Exercises
1. Go to Appendix D, "Create Table Statements for Book Examples," to get the DDL

for the tables used in this book and create the tables.

Hour 4: The Normalization Process
Overview

In this hour, you learn the process of taking a raw database and breaking it into logical units called tables.
This process is referred to as normalization.

The advantages and disadvantages of both normalization and denormalization of a database are
discussed, as well as data integrity versus performance issues that pertain to normalization.

Normalizing a Database

 New Term Normalization is a process of reducing redundancies of data in a database. In addition to data,
names, object names, and forms are also normalized in a database.

The Raw Database
A database that is not normalized may include data that is contained in one or more different tables for no
apparent reason. This could be bad for security reasons, disk space usage, speed of queries, efficiency of
database updates, and, maybe most importantly, data integrity. A database before normalization is one that
has not been broken down logically into smaller, more manageable tables. Figure 4.1 illustrates the database
used for this book before it was normalized.

Figure 4.1: The raw database.

Logical Database Design
 New Term Any database should be designed with the end user in mind. Logical database design, also
referred to as the logical model, is the process of arranging data into logical, organized groups of objects that
can easily be maintained. The logical design of a database should reduce data repetition or go so far as to
completely eliminate it. After all, why store the same data twice? Naming conventions used in a database
should also be standard and logical.

What Are the End User's Needs?
 New Term The needs of the end user should be one of the top considerations when designing a database.
Remember that the end user is the person who ultimately uses the database. There should be ease of use
through the user's front-end tool (a program that allows a user access to a database), but this, along with
optimal performance, cannot be achieved if the user's needs are not taken into consideration.

Some user-related design considerations include the following:
 What data should be stored in the database?
 How will the user access the database?
 What privileges does the user require?
 How should the data be grouped in the database?
 What data is the most commonly accessed?
 How is all data related in the database?

 - 37 -

 What measures should be taken to ensure accurate data?

Data Redundancy
Data should not be redundant, which means that the duplication of data should be kept to a minimum for
several reasons. For example, it is unnecessary to store an employee's home address in more than one
table. With duplicate data, unnecessary space is used. Confusion is always a threat when, for instance, an
address for an employee in one table does not match the address of the same employee in another table.
Which table is correct? Do you have documentation to verify the employee's current address? As if data
management is not difficult enough, redundancy of data could prove to be a disaster.

The Normal Forms
The next sections discuss the normal forms, an integral concept involved in the process of database
normalization.

 New Term Normal form is a way of measuring the levels, or depth, to which a database has been
normalized. A database's level of normalization is determined by the normal form.

The following are the three most common normal forms in the normalization process:
 The first normal form
 The second normal form
 The third normal form

Of the three normal forms, each subsequent normal form depends on normalization steps taken in the
previous normal form. For example, to normalize a database using the second normal form, the
database must first be in the first normal form.

The First Normal Form
The objective of the first normal form is to divide the base data into logical units called tables. When each
table has been designed, a primary key is assigned to most or all tables. Examine Figure 4.2, which
illustrates how the raw database, shown in the previous figure, has been redeveloped using the first normal
form.

Figure 4.2: The first normal form.

You can see that to achieve the first normal form, data had to be broken into logical units, each having a
primary key and ensuring that there are no repeated groups in any of the tables. Instead of one large
table, there are now smaller, more manageable tables: EMPLOYEE_TBL, CUSTOMER_TBL, and
PRODUCTS_TBL. The primary keys are normally the first columns listed in a table, in this case: EMP_ID,
CUST_ID, and PROD_ID.

The Second Normal Form
The objective of the second normal form is to take data that is only partly dependent on the primary key and
enter that data into another table. Figure 4.3 illustrates the second normal form.

 - 38 -

Figure 4.3: The second normal form.

According to the figure, the second normal form is derived from the first normal form by further breaking
two tables down into more specific units.
EMPLOYEE_TBL split into two tables called EMPLOYEE_TBL and EMPLOYEE_PAY_TBL. Personal
employee information is dependent on the primary key (EMP_ID), so that information remained in the
EMPLOYEE_TBL (EMP_ID, LAST_NAME, FIRST_NAME, MIDDLE_NAME, ADDRESS, CITY, STATE, ZIP,
PHONE, and PAGER). On the other hand, the information that is only partly dependent on the EMP_ID
(each individual employee) is used to populate EMPLOYEE_PAY_TBL (EMP_ID, POSITION,
POSITION_DESC, DATE_HIRE, PAY_RATE, DATE_LAST_RAISE). Notice that both tables contain the
column EMP_ID. This is the primary key of each table and is used to match corresponding data
between the two tables.
CUSTOMER_TBL split into two tables called CUSTOMER_TBL and ORDERS_TBL. What took place is
similar to what occurred in the EMPLOYEE_TBL. Columns that were partly dependent on the primary key
were directed to another table. The order information for a customer is dependent on each CUST_ID,
but does not directly depend on the general customer information in the original table.

The Third Normal Form
The third normal form's objective is to remove data in a table that is not dependent on the primary key.
Figure 4.4 illustrates the third normal form.

Figure 4.4: The third normal form.

Another table was created to display the use of the third normal form. EMPLOYEE_PAY_TBL is split into
two tables, one table containing the actual employee pay information and the other containing the
position descriptions, which really do not need to reside in EMPLOYEE_PAY_TBL. The POSITION_DESC
column is totally independent of the primary key, EMP_ID.

 - 39 -

Naming Conventions
Naming conventions are one of the foremost considerations when you're normalizing a database. You want
to give your tables names that are descriptive of the type of information they contain. A company-wide
naming convention should be set, providing guidance in the naming of not only tables within the database,
but users, filenames, and other related objects. Designing and enforcing naming conventions is one of a
company's first steps toward a successful database implementation.

Benefits of Normalization
Normalization provides numerous benefits to a database. Some of the major benefits include the following:

 Greater overall database organization
 Reduction of redundant data
 Data consistency within the database
 A much more flexible database design
 A better handle on database security

Organization is brought about by the normalization process, making everyone's job easier, from the
user who accesses tables to the database administrator (DBA) who is responsible for the overall
management of every object in the database. Data redundancy is reduced, which simplifies data
structures and conserves disk space. Because duplicate data is minimized, the possibility of
inconsistent data is greatly reduced. For example, in one table an individual's name could read STEVE
SMITH, whereas the name of the same individual reads STEPHEN R. SMITH in another table. Because
the database has been normalized and broken into smaller tables, you are provided with more flexibility
as far as modifying existing structures. It is much easier to modify a small table with little data than to
modify one big table that holds all the vital data in the database. Lastly, security is also provided in the
sense that the DBA can grant access to limited tables to certain users. Security is easier to control when
normalization has occurred.
 New Term Data integrity is the assurance of consistent and accurate data within a database.

Referential Integrity
Referential integrity simply means that the values of one column in a table depend on the values of a column
in another table. For instance, in order for a customer to have a record in the ORDERS_TBL table, there must
first be a record for that customer in the CUSTOMER_TBL table. Integrity constraints can also control values
by restricting a range of values for a column. The integrity constraint should be created at the table's
creation. Referential integrity is typically controlled through the use of primary and foreign keys.

In a table, a foreign key, normally a single field, directly references a primary key in another table to
enforce referential integrity. In the preceding paragraph, the CUST_ID in ORDERS_TBL is a foreign key
that references CUST_ID in CUSTOMER_TBL.

Drawbacks of Normalization
Although most successful databases are normalized to some degree, there is one substantial drawback of a
normalized database: reduced database performance. The acceptance of reduced performance requires the
knowledge that when a query or transaction request is sent to the database, there are factors involved, such
as CPU usage, memory usage, and input/output (I/O). To make a long story short, a normalized database
requires much more CPU, memory, and I/O to process transactions and database queries than does a
denormalized database. A normalized database must locate the requested tables and then join the data from
the tables to either get the requested information or to process the desired data. A more in-depth discussion
concerning database performance occurs in Hour 18, "Managing Database Users."

Denormalizing a Database
 New Term Denormalization is the process of taking a normalized database and modifying table structures to
allow controlled redundancy for increased database performance. Attempting to improve performance is the
only reason to ever denormalize a database. A denormalized database is not the same as a database that
has not been normalized. Denormalizing a database is the process of taking the level of normalization within
the database down a notch or two. Remember, normalization can actually slow performance with its
frequently occurring table join operations. (Table joins are discussed during Hour 13, "Joining Tables in
Queries.") Denormalization may involve recombining separate tables or creating duplicate data within tables
to reduce the number of tables that need to be joined to retrieve the requested data, which results in less I/O
and CPU time.

 - 40 -

There are costs to denormalization, however. Data redundancy is increased in a denormalized
database, which can improve performance but requires more extraneous efforts to keep track of related
data. Application coding renders more complications, because the data has been spread across various
tables and may be more difficult to locate. In addition, referential integrity is more of a chore; related
data has been divided among a number of tables. There is a happy medium in both normalization and
denormalization, but both require a thorough knowledge of the actual data and the specific business
requirements of the pertinent company.

Summary

A difficult decision has to be made concerning database design—to normalize or not to normalize, that is the
question. You will always want to normalize a database to some degree. How much do you normalize a
database without destroying performance? The real decision relies on the application itself. How large is the
database? What is its purpose? What types of users are going to access the data?

This hour covered the three most common normal forms, the concepts behind the normalization
process, and the integrity of data. The normalization process involves many steps, most of which are
optional but vital to the functionality and performance of your database. Regardless of how deep you
decide to normalize, there will most always be a trade-off, either between simple maintenance and
questionable performance or complicated maintenance and better performance. In the end, the
individual (or team of individuals) designing the database must decide, and that person or team is
responsible.

Q&A

Q. Why should I be so concerned with the end user's needs when designing
the database?

A.

The end users are the real data experts who use the database, and, in that
respect, they should be the focus of any database design effort. The
database designer only helps organize the data.

Q. It seems to me that normalization is more advantageous than
denormalization. Do you agree?

A.

It can be more advantageous. However, denormalization, to a point, could
be more advantageous. Remember, there are many factors that help
determine which way to go. You will probably normalize your database to
reduce repetition in the database, but may turn around and denormalize to a
certain extent to improve performance.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. True or false: Normalization is the process of grouping data into logical related

groups.
2. True or false: Having no duplicate or redundant data in a database, and having

everything in the database normalized, is always the best way to go.
3. True or false: If data is in the third normal form, it is automatically in the first and

second normal forms.
4. What is a major advantage of a denormalized database versus a normalized

database?
5. What are some major disadvantages of denormalization?

Exercises
1. You are developing a new database for a small company. Take the following data

and normalize it. Keep in mind that there would be many more items for a small
company than you are given here.

 - 41 -

Employees:

Angela Smith, secretary, 317-545-6789, RR 1 Box 73, Greensburg, Indiana, 47890,
$9.50 hour, date started January 22, 1996, SSN is 323149669.

Jack Lee Nelson, salesman, 3334 N Main St, Brownsburg, IN, 45687, 317-852-9901,
salary of $35,000.00 year, SSN is 312567342, date started 10/28/95.

Customers:

Robert's Games and Things, 5612 Lafayette Rd, Indianapolis, IN, 46224, 317-291-7888,
customer ID is 432A.

Reed's Dairy Bar, 4556 W 10th St, Indianapolis, IN, 46245, 317-271-9823, customer ID is
117A.

Customer Orders:

Customer ID is 117A, date of last order is December 20, 1999, product ordered was
napkins and the product ID is 661.

Hour 5: Manipulating Data
Overview

In this hour, you learn the part of SQL known as Data Manipulation Language—DML. DML is the part of SQL
that is used to make changes to data and tables in a relational database.

Overview of Data Manipulation
Data Manipulation Language (DML) is the part of SQL that allows a database user to actually propagate
changes among data in a relational database. With DML, the user can populate tables with new data, update
existing data in tables, and delete data from tables. Simple database queries can also be performed within a
DML command.

There are three basic DML commands in SQL:
INSERT
UPDATE
DELETE
The SELECT command, which can be used with DML commands, is discussed in more detail in Hour 7,
"Introduction to the Database Query."

Populating Tables with New Data

 New Term Populating a table with data is simply the process of entering new data into a table, whether
through a manual process using individual commands or through batch processes using programs or other
related software.

Many factors can affect what data and how much data can be put into a table when populating tables
with data. Some major factors include existing table constraints, the physical table size, column data
types, the length of columns, and other integrity constraints, such as primary and foreign keys. The
following sections help you learn the basics of inserting new data into a table, in addition to offering
some Dos and Don'ts.

Note Do not forget that SQL statements can be in upper- or lowercase. The data,
depending on how it is stored in the database, is not case-sensitive. These
examples use both lower- and uppercases just to show that it does not affect the
outcome.

Inserting Data into a Table
Use the INSERT statement to insert new data into a table. There are a few options with the INSERT
statement; look at the following basic syntax to begin:

 - 42 -

insert into schema.table_name
VALUES ('value1', 'value2', [NULL]);
Using this INSERT statement syntax, you must include every column in the specified table in the
VALUES list. Notice that each value in this list is separated by a comma. The values inserted into the
table must be enclosed by quotation marks for character and date data types. Quotation marks are not
required for numeric data types or NULL values using the NULL keyword. A value should be present for
each column in the table.
In the following example, you insert a new record into the PRODUCTS_TBL table.

Table structure:
products_tbl

COLUMN Name Null? DATA Type
------------------------------ -------- -------------
PROD_ID NOT NULL VARCHAR2(10)
PROD_DESC NOT NULL VARCHAR2(25)
COST NOT NULL NUMBER(6,2)
Sample INSERT statement:
Input
INSERT INTO PRODUCTS_TBL
VALUES ('7725','LEATHER GLOVES',24.99);
Output
1 row created.
In this example, you insert three values into a table with three columns. The inserted values are in the
same order as the columns listed in the table. The first two values are inserted using quotation marks,
because the data types of the corresponding columns are of character type. The third value's
associated column, COST, is a numeric data type and does not require quotation marks, although they
can be used.

Note The schema name, or table owner, has not been specified as part of the table
name, as it was shown in the syntax. The schema name is not required if you are
connected to the database as the user who owns the table.

Inserting Data into Limited Columns of a Table
There is a way you can insert data into a table's limited columns. For instance, suppose you want to insert all
values for an employee except a pager number. You must, in this case, specify a column list as well as a
VALUES list in your INSERT statement.

Input
INSERT INTO EMPLOYEE_TBL
(EMP_ID, LAST_NAME, FIRST_NAME, MIDDLE_NAME, ADDRESS, CITY, STATE, ZIP, PHONE)
VALUES
('123456789', 'SMITH', 'JOHN', 'JAY', '12 BEACON CT',
'INDIANAPOLIS', 'IN', '46222', '3172996868');
Output
1 row created.

The syntax for inserting values into a limited number of columns in a table is as follows:
INSERT INTO SCHEMA TABLE_NAME ('COLUMN1', 'COLUMN2')
VALUES ('VALUE1', 'VALUE2');
You use ORDERS_TBL and insert values into only specified columns in the following example.

Table structure:
ORDERS_TBL

 - 43 -

COLUMN NAME Null? DATA TYPE
------------------------------ --------- ------------
ORD_NUM NOT NULL VARCHAR2(10)
CUST_ID NOT NULL VARCHAR2(10)
PROD_ID NOT NULL VARCHAR2(10)
QTY NOT NULL NUMBER(4)
ORD_DATE DATE
Sample INSERT statement:
Input
insert into orders_tbl (ord_num,cust_id,prod_id,qty)
values ('23A16','109','7725',2);
Output
1 row created.
You have specified a column list enclosed by parentheses after the table name in the INSERT
statement. You have listed all columns into which you want to insert data. ORD_DATE is the only
excluded column. You can see, if you look at the table definition, that ORD_DATE does not require data
for every record in the table. You know that ORD_DATE does not require data because NOT NULL is not
specified in the table definition. NOT NULL tells us that NULL values are not allowed in the column.
Furthermore, the list of values must appear in the order in which you want to insert them according to
the column list.

Note The column list in the INSERT statement does not have to reflect the same order
of columns as in the definition of the associated table, but the list of values must
be in the order of the associated columns in the column list.

Inserting Data from Another Table
You can insert data into a table based on the results of a query from another table using a combination of the
INSERT statement and the SELECT statement. Briefly, a query is an inquiry to the database that expects
data to be returned. See Hour 7 for more information on queries. A query is a question that the user asks the
database, and the data returned is the answer. In the case of combining the INSERT statement with the
SELECT statement, you are able to insert the data retrieved from a query into a table.

The syntax for inserting data from another table is
insert into schema.table_name [('column1', 'column2')]
select [*|('column1', 'column2')]
from table_name
[where condition(s)];
You see three new keywords in this syntax, which are covered here briefly. These keywords are
SELECT, FROM, and WHERE. SELECT is the main command used to initiate a query in SQL. FROM is a
clause in the query that specifies the names of tables in which the target data should be found. The
WHERE clause, also part of the query, is used to place conditions on the query itself. An example
condition may state: WHERE NAME = 'SMITH'. These three keywords are covered extensively during
Hour 7 and Hour 8, "Using Operators to Categorize Data."
 New Term A condition is a way of placing criteria on data affected by a SQL statement.
The following example uses a simple query to view all data in the PRODUCTS_TBL table. SELECT *
tells the database server that you want information on all columns of the table. Because there is no
WHERE clause, you want to see all records in the table as well.
Input
select * from products_tbl;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ -----
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75

 - 44 -

13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

11 rows selected.
Now, insert values into the PRODUCTS_TMP table based on the preceding query. You can see that 11
rows are created in the temporary table.
Input
INSERT INTO PRODUCTS_TMP
SELECT * FROM PRODUCTS_TBL;
Output
11 rows created.
The following query shows all data in the PRODUCTS_TMP table that you just inserted:
Input
SELECT * FROM PRODUCTS_TMP;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ -----
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

11 rows selected.
Inserting NULL Values

Inserting a NULL value into a column of a table is a simple matter. You might want to insert a NULL value into
a column if the value of the column in question is unknown. For instance, not every person carries a pager,
so it would be inaccurate to enter an erroneous pager number—not to mention, you would not be budgeting
space. A NULL value can be inserted into a column of a table using the keyword NULL.

The syntax for inserting a NULL value follows:
insert into schema.table_name values
('column1', NULL, 'column3');
The NULL keyword should be used in the associated column that exists in the table. That column will
not have data in it for that row if you enter NULL. In the syntax, a NULL value is being entered in the
place of COLUMN2.

 - 45 -

Study the two following examples:
Input
INSERT INTO ORDERS_TBL (ORD_NUM,CUST_ID,PROD_ID,QTY,ORD_DATE)
VALUES ('23A16','109','7725',2,NULL);
Output
1 row created.
In the first example, all columns in which to insert values are listed, which also happen to be every
column in the ORDERS_TBL table. You insert a NULL value for the ORD_DATE column, meaning that
you either do not know the order date, or there is no order date at this time.
Input
INSERT INTO ORDERS_TBL
VALUES ('23A16','109','7725',2, '');
Output
1 row created.
There are two differences from the first statement in the second example, but the results are the same.
First, there is not a column list. Remember that a column list is not required if you are inserting data into
all columns of a table. Second, instead of inserting the value NULL into the ORD_DATE column, you
insert '' (two single quotation marks together), which also symbolizes a NULL value (because there is
nothing between them) .

Updating Existing Data

Pre-existing data in a table can be modified using the UPDATE command. The UPDATE command does not
add new records to a table, nor does it remove records—it simply updates existing data. The update is
generally used to update one table at a time in a database, but can be used to update multiple columns of a
table at the same time. An individual row of data in a table can be updated, or numerous rows of data can be
updated in a single statement, depending on what's needed.

Updating the Value of a Single Column
The most simple form of the UPDATE statement is its use to update a single column in a table. Either a single
row of data or numerous records can be updated when updating a single column in a table.

The syntax for updating a single column follows:
update table_name
set column_name = 'value'
[where condition];
The following example updates the QTY column in the ORDERS table to the new value 1 for the
ORD_NUM 23A16, which you have specified using the WHERE clause.
Input
UPDATE ORDERS_TBL
SET QTY = 1
WHERE ORD_NUM = '23A16';
Output
1 row updated.
The following example is identical to the previous example, except for the absence of the WHERE clause:
Type
UPDATE ORDERS_TBL
SET QTY = 1;
Output
11 rows updated.
Notice that in this example, 11 rows of data were updated. You set the QTY to 1, which updated the
quantity column in the ORDERS_TBL table for all rows of data. Is this really what you wanted to do?
Perhaps in some cases, but rarely will you issue an UPDATE statement without a WHERE clause.

Warning Extreme caution must be used when using the UPDATE statement without a
WHERE clause. The target column is updated for all rows of data in the table if

 - 46 -

conditions are not designated using the WHERE clause.

Updating Multiple Columns in One or More Records
Next, you see how to update multiple columns with a single UPDATE statement. Study the following syntax:

update table_name
set column1 = 'value',
 [column2 = 'value',]
 [column3 = 'value']
[where condition];
Notice the use of the SET in this syntax—there is only one SET, but multiple columns. Each column is
separated by a comma. You should start to see a trend in SQL. The comma is usually used to separate
different types of arguments in SQL statements.
Input
UPDATE ORDERS_TBL
SET QTY = 1,
 CUST_ID = '221'
WHERE ORD_NUM = '23A16';
Output
1 row updated.
A comma is used to separate the two columns being updated. Again, the WHERE clause is optional, but
usually necessary.

Note The SET keyword is used only once for each UPDATE statement. If more than one
column is to be updated, a comma is used to separate the columns to be
updated.

Deleting Data from Tables

The DELETE command is used to remove entire rows of data from a table. The DELETE command is not
used to remove values from specific columns; a full record, including all columns, is removed. The DELETE
statement must be used with caution—it works all too well. The next section discusses methods for deleting
data from tables.

To delete a single record or selected records from a table, the DELETE statement must be used with the
following syntax:
delete from schema.table_name
[where condition];
Type
DELETE FROM ORDERS_TBL
WHERE ORD_NUM = '23A16';
Output
1 row deleted.
Notice the use of the WHERE clause. The WHERE clause is an essential part of the DELETE statement if
you are attempting to remove selected rows of data from a table. You rarely issue a DELETE statement
without the use of the WHERE clause. If you do, your results are similar to the following example:
DELETE FROM ORDERS_TBL;

11 rows deleted.

Warning If the WHERE clause is omitted from the DELETE statement, all rows of data
are deleted from the table. As a general rule, always use a WHERE clause with
the DELETE statement.

Note The temporary table that was populated from the original table earlier in this hour
can be very useful for testing the DELETE and UPDATE commands before issuing
them against the original table.

 - 47 -

Summary
You have learned the three basic commands in Data Manipulation Language (DML): the INSERT, UPDATE,
and DELETE statements. As you have seen, data manipulation is a very powerful part of SQL, allowing the
database user to populate tables with new data, update existing data, and delete data.

A very important lesson when updating or deleting data from tables in a database is sometimes learned
when neglecting the use of the WHERE clause. Remember that the WHERE clause places conditions on
an SQL statement—particularly in the case of UDPATE and DELETE operations, when specifying
specific rows of data that will be affected during a transaction. All target table data rows are affected if
the WHERE clause is not used, which could be disastrous to the database. Protect your data and be
cautious during data manipulation operations.

Q&A

Q.

With all the warnings about DELETE and UPDATE, I'm a little afraid to use
them. If I accidentally update all the records in a table because the WHERE
clause was not used, can the changes be reversed?

A.

There is no reason to be afraid, because there is not much you can do to the
database that cannot be corrected, although considerable time and work
may be involved. The next hour discusses the concepts of transactional
control, which allows data manipulation operations to either be finalized or
undone.

Q. Is the INSERT statement the only way to enter data into a table?
A.

No, just remember that the INSERT statement is ANSI standard. The
various implementations have their tools to enter data into tables. For
example, Oracle has a utility called SQL*Loader. Also, many of the various
implementations have utilities called IMPORT that can be used to insert data.
There are many good books on the market that will expand on these utilities.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. Use the EMPLOYEE_TBL with the following structure:

COLUMN DATA TYPE (NOT)NULL

LAST_NAME VARCHAR2(20) NOT NULL

FIRST_NAME VARCHAR2(20) NOT NULL

SSN CHAR(9) NOT NULL

PHONE NUMBER(10) NULL

LAST_NAME FIRST_NAME SSN PHONE

SMITH JOHN 312456788 3174549923

ROBERTS LISA 232118857 3175452321

SMITH SUE 443221989 3178398712

PIERCE BILLY 310239856 3176763990
 What would happen if the following statements were run:

b. insert into employee_tbl
c. ('JACKSON', 'STEVE', '313546078', '3178523443');

d. insert into employee_tbl values
e. ('JACKSON', 'STEVE', '313546078', '3178523443');

 - 48 -

f. insert into employee_tbl values
g. ('MILLER', 'DANIEL', '230980012', NULL);

h. insert into employee_tbl values
i. ('TAYLOR', NULL, '445761212', '3179221331');
j. delete from employee_tbl;

k. delete from employee_tbl
l. where last_name = 'SMITH';

m. delete from employee_tbl
n. where last_name = 'SMITH'

o. and first_name = 'JOHN';
p. update employee_tbl

q. set last_name = 'CONRAD';
r. update employee_tbl
s. set last_name = 'CONRAD'

t. where last_name = 'SMITH';
u. update employee_tbl
v. set last_name = 'CONRAD',

w. first_name = 'LARRY';
x. update employee_tbl
y. set last_name = 'CONRAD'
z. first_name = 'LARRY'

aa. where ssn = '313546078';

Exercises
1. Go to Appendix E of this book, "INSERT Statements for Data in Book Examples."

Run the INSERT statements to populate the tables that you created in Exercise 1
of Hour 3. When this has been accomplished, you should be able to better follow
the examples and exercise questions in this book.

2. Using the EMPLOYEE_TBL with the following structure:

COLUMN DATA TYPE (NOT)NULL

LAST_NAME VARCHAR2(20) NOT NULL
FIRST_NAME VARCHAR2(20) NOT NULL
SSN CHAR(9) NOT NULL
PHONE NUMBER(10) NULL
LAST_NAME FIRST_NAME SSN PHONE

SMITH JOHN 312456788 3174549923
ROBERTS LISA 232118857 3175452321
SMITH SUE 443221989 3178398712
PIERCE BILLY 310239856 3176763990

Write DML to accomplish the following:
a. Correct Billy Pierce's SSN to read 310239857.
b. Add Ben Moore, PHONE is 317-5649880, ssn is 313456789.
c. John Smith quit; remove his record.

Hour 6: Managing Database Transactions
Overview

In this hour, you learn the concepts behind the management of database transactions.

What Is a Transaction?
 New Term A transaction is a unit of work that is performed against a database. Transactions are units or
sequences of work accomplished in a logical order, whether in a manual fashion by a user or automatically
by some sort of a database program. In a relational database using SQL, transactions are accomplished
using the DML commands that were discussed during Hour 5, "Manipulating Data" (INSERT, UPDATE, and

 - 49 -

DELETE). A transaction is the propagation of one or more changes to the database. For instance, you are
performing a transaction if you performed an UPDATE statement on a table to change an individual's name.

A transaction can either be one DML statement or a group of statements. When managing groups of
transactions, each designated group of transactions must be successful as one entity or none of them
will be successful.

The following list describes the nature of transactions:
 All transactions have a beginning and an end.
 A transaction can be saved or undone.
 If a transaction fails in the middle, no part of the transaction can be saved to the

database.
Note To start or execute transactions is implementation-specific. You must check your

particular implementation for how to begin transactions. There is no explicit start
or begin transaction in the ANSI standard.

What Is Transactional Control?

 New Term Transactional control is the ability to manage various transactions that may occur within a
relational database management system. When you speak of transactions, you are referring to the INSERT,
UPDATE, and DELETE commands, which were covered during the last hour.

When a transaction is executed and completes successfully, the target table is not immediately
changed, although it may appear so according to the output. When a transaction successfully
completes, there are transactional control commands that are used to finalize the transaction, either
saving the changes made by the transaction to the database or reversing the changes made by the
transaction.

There are three commands used to control transactions:
 COMMIT
 ROLLBACK
 SAVEPOINT

Each of these is discussed in detail in the following sections.
Note Transactional control commands are only used with the DML commands INSERT,

UPDATE, and DELETE. For example, you do not issue a COMMIT statement after
creating a table. When the table is created, it is automatically committed to the
database. Likewise, you cannot issue a ROLLBACK to replenish a table that was
just dropped.

When a transaction has completed, the transactional information is stored either in an allocated area or
in a temporary rollback area in the database. All changes are held in this temporary rollback area until a
transactional control command is issued. When a transactional control command is issued, changes are
either made to the database or discarded; then, the temporary rollback area is emptied. Figure 6.1
illustrates how changes are applied to a relational database.

Figure 6.1: Rollback area.

The COMMIT Command
The COMMIT command is the transactional command used to save changes invoked by a transaction to the
database. The COMMIT command saves all transactions to the database since the last COMMIT or ROLLBACK
command.

The syntax for this command is
COMMIT [WORK];

 - 50 -

The keyword COMMIT is the only mandatory part of the syntax, along with the character or command
used to terminate a statement according to each implementation. WORK is a keyword that is completely
optional; its only purpose is to make the command more user-friendly.
In the following example, you begin by selecting all data from the PRODUCT_TMP table:
Input
SELECT * FROM PRODUCTS_TMP;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

11 rows selected.

Next, you delete all records from the table where the product cost is less than $14.00.
Input
DELETE FROM PRODUCTS_TMP
WHERE COST < 14;
Output
8 rows deleted.
A COMMIT statement is issued to save the changes to the database, completing the transaction.
Input
COMMIT;
Output
Commit complete.

Warning Frequent COMMITs in large loads or unloads of the database are highly
recommended; however, too many COMMITs cause the job running to take a
lot of extra time to complete. Remember that all changes are sent to the
temporary rollback area first. If this temporary rollback area runs out of space
and cannot store information about changes made to the database, the
database will probably halt, disallowing further transactional activity.

Note In some implementations, transactions are committed without issuing the COMMIT
command—instead, merely signing out of the database causes a commit to
occur.

The ROLLBACK Command
The ROLLBACK command is the transactional control command used to undo transactions that have not
already been saved to the database. The ROLLBACK command can only be used to undo transactions since
the last COMMIT or ROLLBACK command was issued.

The syntax for the ROLLBACK command is as follows:
rollback [work];
Once again, as in the COMMIT statement, the WORK keyword is an optional part of the ROLLBACK
syntax.

 - 51 -

In the following example, you begin by selecting all records from the PRODUCTS_TMP table since the
previous deletion of 14 records:
Input
SELECT * FROM PRODUCTS_TMP;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
90 LIGHTED LANTERNS 14.5
2345 OAK BOOKSHELF 59.99

3 rows selected.
Next, you update the table, changing the product cost to $39.99 for the product identification number
11235:
Input
UPDATE PRODUCTS_TMP
SET COST = 39.99
WHERE PROD_ID = '11235';
Output
1 row updated.

If you perform a quick query on the table, the change appears to have occurred:
Input
SELECT * FROM PRODUCTS_TMP;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 39.99
90 LIGHTED LANTERNS 14.5
2345 OAK BOOKSHELF 59.99

3 rows selected.
Now, issue the ROLLBACK statement to undo the last change:
Input
ROLLBACK;
Output
Rollback complete.

Finally, verify that the change was not committed to the database:
Input
SELECT * FROM PRODUCTS_TMP;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
90 LIGHTED LANTERNS 14.5
2345 OAK BOOKSHELF 59.99

3 rows selected

 - 52 -

The SAVEPOINT Command
A SAVEPOINT is a point in a transaction when you can roll the transaction back to a certain point without
rolling back the entire transaction.

The syntax for the SAVEPOINT command is
SAVEPOINT SAVEPOINT_NAME
This command serves only in the creation of a SAVEPOINT among transactional statements. The
ROLLBACK command is used to undo a group of transactions. The SAVEPOINT is a way of managing
transactions by breaking large numbers of transactions into smaller, more manageable groups.

Note The SAVEPOINT name must be unique to the associated group of transactions.
However, the SAVEPOINT can have the same name as a table or other object.
Refer to specific implementation documentation for more details on naming
conventions.

The ROLLBACK TO SAVEPOINT Command
The syntax for rolling back to a SAVEPOINT is as follows:

ROLLBACK TO SAVEPOINT_NAME;
In this example, you plan to delete the remaining three records from the PRODUCTS_TMP table. You
want to create a SAVEPOINT before each delete, so that you can ROLLBACK to any SAVEPOINT at any
time to return the appropriate data to its original state:
Input
SAVEPOINT SP1;
Output
Savepoint created.
Input
DELETE FROM PRODUCTS_TMP WHERE PROD_ID = '11235';
Output
1 row deleted.
Input
SAVEPOINT SP2;
Output
Savepoint created.
Input
DELETE FROM PRODUCTS_TMP WHERE PROD_ID = '90';
Output
1 row deleted.
Input
SAVEPOINT SP3;
Output
Savepoint created.
Input
DELETE FROM PRODUCTS_TMP WHERE PROD_ID = '2345';
Output
1 row deleted.
Now that the three deletions have taken place, say you have changed your mind and decided to
ROLLBACK to the SAVEPOINT that you identified as SP2. Because SP2 was created after the first
deletion, the last two deletions are undone:
Input
ROLLBACK TO SP2;
Output
Rollback complete.
Notice that only the first deletion took place since you rolled back to SP2:
Input
SELECT * FROM PRODUCTS_TMP;
Output
PROD_ID PROD_DESC COST

 - 53 -

---------- ------------------------------ -----
90 LIGHTED LANTERNS 14.5
2345 OAK BOOKSHELF 59.99

2 rows selected.
Remember, the ROLLBACK command by itself will roll back to the last COMMIT or ROLLBACK. You have
not yet issued a COMMIT, so all deletions are undone, as in the following example:
Input
ROLLBACK;
Output
Rollback complete.
Input
SELECT * FROM PRODUCTS_TMP;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
90 LIGHTED LANTERNS 14.5
2345 OAK BOOKSHELF 59.99

3 rows selected.
The RELEASE SAVEPOINT Command

The RELEASE SAVEPOINT command is used to remove a SAVEPOINT that you have created. Once a
SAVEPOINT has been released, you can no longer use the ROLLBACK command to undo transactions
performed since the SAVEPOINT.

RELEASE SAVEPOINT SAVEPOINT_NAME;
The SET TRANSACTION Command

The SET TRANSACTION command can be used to initiate a database transaction. This command is used to
specify characteristics for the transaction that follows. For example, you can specify a transaction to be read
only, or read write. For example,

SET TRANSACTION READ WRITE;
SET TRANSACTION READ ONLY;

There are other characteristics that can be set for a transaction which are out of the scope of this book.
For more information, see the documentation for your implementation of SQL.

Transactional Control and Database Performance

Poor transactional control can hurt database performance and even bring the database to a halt. Repeatedly
poor database performance may be due to a lack of transactional control during large inserts, updates, or
deletes. Not only are large batch processes, such as these, demanding on the CPU and memory
themselves, but the temporary storage for rollback information continues to grow until either a COMMIT or
ROLLBACK command is issued.

When a COMMIT is issued, rollback transactional information is written to the target table and the
rollback information in temporary storage is cleared. When a ROLLBACK is issued, no changes are
made to the database and the rollback information in the temporary storage is cleared. If neither a
COMMIT or ROLLBACK is issued, the temporary storage for rollback information continues to grow until
there is no more space left, thus forcing the database to stop all processes until space is freed.

Summary

During this hour, you learned the preliminary concepts of transactional management through the use of three
transactional control commands: COMMIT, ROLLBACK, and SAVEPOINT. COMMIT is used to save a
transaction to the database. ROLLBACK is used to undo a transaction that was performed. SAVEPOINT is

 - 54 -

used to break a transaction or transactions into groups, allowing you to roll back to specific logical points in
transaction processing.

Remember that you should frequently use the COMMIT and ROLLBACK commands when running large
transactional jobs to keep space free in the database. Also keep in mind that these transactional
commands are used only with the three DML commands (INSERT, UPDATE, and DELETE).

Q&A

Q. Is it necessary to issue a commit after every INSERT statement?
A.

No, not necessarily. If you were inserting a few hundred thousand rows into
a table, a COMMIT would be recommended every 5,000–10,000, depending
on the size of the temporary rollback area. Remember that the database
stops when the rollback area fills up.

Q. How does the ROLLBACK command undo a transaction?
A. The ROLLBACK command clears all changes from the rollback area.
Q. If I issue a transaction and 99 percent of the transaction completes but the

other 1 percent errs, will I be able to redo only the error part?
A. No, the entire transaction must succeed; otherwise, data integrity is

compromised.
Q. A transaction is permanent after I issue a COMMIT, but can't I change data

with an update?
A.

Permanent used in this matter means that it is now a part of the database.
The UPDATE statement can always be used to make corrections to the
database.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. True or false: If you have committed several transactions, have several

moretransactions that have not been committed, and issue a ROLLBACK
command, all your transactions for the same session are undone.

2. True or false: A SAVEPOINT actually saves transactions after a specified amount
of transactions have executed.

3. Briefly describe the purpose of each one of the following commands: COMMIT,
ROLLBACK, and SAVEPOINT.

Exercises
1. Take the following transactions and create SAVEPOINTs after every three

transactions. Then, COMMIT the transactions.
2. transaction1;
3. transaction2;
4. transaction3;
5. transaction4;
6. transaction5;
7. transaction6;
8. transaction7;
9. transaction8;
10. transaction9;
11. transaction10;
12. transaction11;
13. transaction12;

Part III: Getting Effective Results from Queries

 - 55 -

Chapter List
Hour 7: Introduction to the Database Query
Hour 8: Using Operators to Categorize Data
Hour 9: Summarizing Data Results from a Query
Hour 10: Sorting and Grouping Data
Hour 11: Restructuring the Appearance of Data
Hour 12: Understanding Dates and Time

Hour 7: Introduction to the Database Query
Overview

In this seventh hour, you learn about database queries, which involve the use of the SELECT statement. The
SELECT statement is probably the most frequently used of all SQL commands after a database's
establishment.

What Is a Query?
 New Term A query is an inquiry into the database using the SELECT statement. A query is used to extract
data from the database in a readable format according to the user's request. For instance, if you have an
employee table, you might issue a SQL statement that returns the employee who is paid the most. This
request to the database for usable employee information is a typical query that can be performed in a
relational database.

Introduction to the SELECT Statement
The SELECT statement, the command that represents Data Query Language (DQL) in SQL, is the statement
used to construct database queries. The SELECT statement is not a standalone statement, which means that
clauses are required. In addition to the required clauses, there are optional clauses that increase the overall
functionality of the SELECT statement. The SELECT statement is by far one of the most powerful statements
in SQL. The FROM clause is the mandatory clause and must always be used in conjunction with the SELECT
statement.

 New Term There are four keywords, or clauses, that are valuable parts of a SELECT statement. These
keywords are as follows:

 SELECT
 FROM
 WHERE
 ORDER BY

Each of these keywords is covered in detail during the following sections.
The SELECT Statement

The SELECT statement is used in conjunction with the FROM clause to extract data from the database in an
organized, readable format. The SELECT part of the query is for selecting the data you want to see according
to the columns in which they are stored in a table.

The syntax for a simple SELECT statement is as follows:

SELECT [* | ALL | DISTINCT COLUMN1, COLUMN2]
FROM TABLE1 [, TABLE2];
The SELECT keyword in a query is followed by a list of columns that you want displayed as part of the
query output. The FROM keyword is followed by a list of one or more tables from which you want to
select data. The asterisk (*) is used to denote that all columns in a table should be displayed as part of
the output. Check your particular implementation for its usage. The ALL option is used to display all
values for a column, including duplicates. The DISTINCT option is used to eliminate duplicate rows.
The default between DISTINCT and ALL is ALL, which does not have to be specified. Notice that the
columns following the SELECT are separated by commas, as is the table list following the FROM.

Note Commas are used to separate arguments in a list in SQL statements. Some
common lists include lists of columns in a query, lists of tables to be selected from
in a query, values to be inserted into a table, and values grouped as a condition in
a query's WHERE clause.

 New Term Arguments are values that are either required or optional to the syntax of a SQL statement
or command.

 - 56 -

Explore the basic capabilities of the SELECT statement by studying the following examples. First,
perform a simple query from the PRODUCTS_TBL table:
Input
SELECT * FROM PRODUCTS_TBL;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

11 rows selected.
The asterisk represents all columns in the table, which, as you can see, are displayed in the form
PROD_ID, PROD_DESC, and COST. Each column in the output is displayed in the order that it appears in
the table. There are 11 records in this table, identified by the feedback 11 rows selected. This
feedback differs among implementations; for example, another feedback for the same query would be
11 rows affected.
Now select data from another table, CANDY_TBL. Create this table in the image of the PRODUCTS_TBL
table for the following examples. List the column name after the SELECT keyword to display only one
column in the table:
Input
SELECT PROD_DESC FROM CANDY_TBL;
Output
PROD_DESC

CANDY CORN
CANDY CORN
HERSHEYS KISS
SMARTIES
4 rows selected.
Four records exist in the CANDY_TBL table. You have used the ALL option in the next statement to
show you that the ALL is optional and redundant. There is never a need to specify ALL; it is a default
option.
Input
SELECT ALL PROD_DESC
FROM CANDY_TBL;
Output
PROD_DESC

CANDY CORN
CANDY CORN

 - 57 -

HERSHEYS KISS
SMARTIES

4 rows selected.
The DISTINCT option is used in the following statement to suppress the display of duplicate records.
Notice that the value CANDY CORN is only printed once in this example.
Input
SELECT DISTINCT PROD_DESC
FROM CANDY_TBL;
Output
PROD_DESC

CANDY CORN
HERSHEYS KISS
SMARTIES

3 rows selected.
DISTINCT and ALL can also be used with parentheses enclosing the associated column. The use of
parentheses is often used in SQL—as well as many other languages—to improve readability.
Input
SELECT DISTINCT(PROD_DESC)
FROM CANDY_TBL;
Output
PROD_DESC

CANDY CORN
HERSHEYS KISS
SMARTIES

3 rows selected.
The FROM Clause

The FROM clause is always used in conjunction with the SELECT statement. It is a required element for any
query. The FROM clause's purpose is to tell the database what table(s) to access to retrieve the desired data
for the query. The FROM clause can contain one or more tables.

The syntax for the FROM clause is as follows:

FROM TABLE1 [, TABLE2]

Using Conditions to Distinguish Data
 New Term A condition is part of a query that is used to display selective information as specified by the
user. The value of a condition is either TRUE or FALSE, thereby limiting the data received from the query.
The WHERE clause is used to place conditions on a query by eliminating rows that would normally be
returned by a query without conditions.

There can be more than one condition in the WHERE clause. If there is more than one condition, they are
connected by the AND and OR operators, which are discussed during Hour 8, "Using Operators to
Categorize Data." As you also learn during the next hour, there are several conditional operators that
can be used to specify conditions in a query. This hour only deals with a single condition for each query.
 New Term An operator is a character or keyword in SQL that is used to combine elements in a SQL
statement.

 The syntax for the WHERE clause is as follows:
SELECT [ALL | * | DISTINCT COLUMN1, COLUMN2]
FROM TABLE1 [, TABLE2]

 - 58 -

WHERE [CONDITION1 | EXPRESSION1]
[AND CONDITION2 | EXPRESSION2]

 The following is a simple SELECT without conditions specified by the WHERE clause:
Input
SELECT *
FROM PRODUCTS_TBL;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

11 rows selected.

Now add a condition for the same query.
Input
SELECT * FROM PRODUCTS_TBL
WHERE COST < 5;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------- -----
13 FALSE PARAFFIN TEETH 1.1
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95

5 rows selected.

The only records displayed are those that cost less than $5.
In the following query, you want to display the product description and cost that matches the product
identification 119.
Input
SELECT PROD_DESC, COST
FROM PRODUCTS_TBL
WHERE PROD_ID = '119';
Output
PROD_DESC COST
------------------------------- -----

 - 59 -

ASSORTED MASKS 4.95

1 row selected.

Sorting Your Output
You usually want your output to have some kind of order. Data can be sorted by using the ORDER BY clause.
The ORDER BY clause arranges the results of a query in a listing format you specify. The default ordering of
the ORDER BY clause is an ascending order; the sort displays in the order A–Z if it's sorting output names
alphabetically. A descending order for alphabetical output would be displayed in the order Z–A. Ascending
order for output for numeric values between 1 and 9 would be displayed 1–9; descending order is displayed
as 9–1.

The syntax for the ORDER BY is as follows:

SELECT [ALL | * | DISTINCT COLUMN1, COLUMN2]
FROM TABLE1 [, TABLE2]
WHERE [CONDITION1 | EXPRESSION1]
[AND CONDITION2 | EXPRESSION2]
ORDER BY COLUMN1|INTEGER [ASC|DESC]
Begin your exploration of the ORDER BY clause with an extension of one of the previous statements.
Order by the product description in ascending order or alphabetical order. Note the use of the ASC
option. ASC can be specified after any column in the ORDER BY clause.
Input
SELECT PROD_DESC, PROD_ID, COST
FROM PRODUCTS_TBL
WHERE COST < 20
ORDER BY PROD_DESC ASC;
Output
PROD_DESC PROD_ID COST
------------------------- --------------- ------
ASSORTED COSTUMES 15 10
ASSORTED MASKS 119 4.95
CANDY CORN 9 1.35
FALSE PARAFFIN TEETH 13 1.1
LIGHTED LANTERNS 90 14.5
PLASTIC PUMPKIN 18 INCH 222 7.75
PLASTIC SPIDERS 87 1.05
PUMPKIN CANDY 6 1.45

8 rows selected.

Tip Because ascending order for output is the default, ASC does not have to be
specified.

You can use DESC, as in the following statement, if you want the same output to be sorted in reverse
alphabetical order.
Input
SELECT PROD_DESC, PROD_ID, COST
FROM PRODUCTS_TBL
WHERE COST < 20
ORDER BY PROD_DESC DESC;
Output
PROD_DESC PROD_ID COST

 - 60 -

------------------------- --------------- ------
PUMPKIN CANDY 6 1.45
PLASTIC SPIDERS 87 1.05
PLASTIC PUMPKIN 18 INCH 222 7.75
LIGHTED LANTERNS 90 14.5
FALSE PARAFFIN TEETH 13 1.1
CANDY CORN 9 1.35
ASSORTED MASKS 119 4.95
ASSORTED COSTUMES 15 10

8 rows selected.
There are shortcuts in SQL. A column listed in the ORDER BY clause can be abbreviated with an
integer. The INTEGER is a substitution for the actual column name, identifying the position of the
column after the SELECT keyword.
An example of using an integer as an identifier in the ORDER BY clause follows:
Input
SELECT PROD_DESC, PROD_ID, COST
FROM PRODUCTS_TBL
WHERE COST < 20
ORDER BY 1;
Output
PROD_DESC PROD_ID COST
------------------------- --------------- ------
ASSORTED COSTUMES 15 10
ASSORTED MASKS 119 4.95
CANDY CORN 9 1.35
FALSE PARAFFIN TEETH 13 1.1
LIGHTED LANTERNS 90 14.5
PLASTIC PUMPKIN 18 INCH 222 7.75
PLASTIC SPIDERS 87 1.05
PUMPKIN CANDY 6 1.45

8 rows selected.
In this query, the integer 1 represents the column PROD_DESC. The integer 2 represents the PROD_ID
column, 3 represents the COST column, and so on.
You can order by multiple columns in a query, using either the column name itself or the associated
number of the column in the SELECT:
ORDER BY 1,2,3
Columns in an ORDER BY clause are not required to appear in the same order as the associated
columns following the SELECT, as shown by the following example:

ORDER BY 1,3,2

Case Sensitivity
Case sensitivity is a very important concept to understand when coding with SQL. Typically, SQL commands
and keywords are not case-sensitive, which allows you to enter your commands and keywords in either
upper- or lowercase—whatever you prefer. The case may be mixed (both upper- and lowercase for a single
word or statement). See Hour 5, "Manipulating Data," on case sensitivity.

Case sensitivity is, however, a factor when dealing with data in SQL. In most situations, data seems to
be stored exclusively in uppercase in a relational database to provide data consistency.

 - 61 -

For instance, your data would not be consistent if you arbitrarily entered your data using random case:
SMITH
Smith
smith
If the last name was stored as smith and you issued a query as follows, no rows would be returned.
SELECT *
FROM EMPLOYEE_TBL
WHERE LAST_NAME = 'SMITH';

Note You must use the same case in your query as the data is stored when referencing
data in the database. When entering data, consult the rules set forth by your
company for the appropriate case to be used.

Examples of Simple Queries

This section provides several examples of queries based on the concepts that have been discussed. The
hour begins with the simplest query you can issue, and builds upon the initial query progressively. You use
the EMPLOYEE_TBL table.

Selecting all records from a table and displaying all columns:
SELECT * FROM EMPLOYEE_TBL;

Selecting all records from a table and displaying a specified column:
SELECT EMP_ID
FROM EMPLOYEE_TBL;

Selecting all records from a table and displaying a specified column. You can enter code on one line or
use a carriage return as desired:
SELECT EMP_ID FROM EMPLOYEE_TBL;

Selecting all records from a table and displaying multiple columns separated by commas:
SELECT EMP_ID, LAST_NAME
FROM EMPLOYEE_TBL;

Displaying data for a given condition:
SELECT EMP_ID, LAST_NAME
FROM EMPLOYEE_TBL
WHERE EMP_ID = '333333333';

Displaying data for a given condition and sorting the output:
SELECT EMP_ID, LAST_NAME
FROM EMPLOYEE_TBL
WHERE CITY = 'INDIANAPOLIS'
ORDER BY EMP_ID;

Displaying data for a given condition and sorting the output on multiple columns, one column sorted in
reverse order:
SELECT EMP_ID, LAST_NAME
FROM EMPLOYEE_TBL
WHERE CITY = 'INDIANAPOLIS'
ORDER BY EMP_ID, LAST_NAME DESC;

Displaying data for a given condition and sorting the output using an integer in the place of the spelled-
out column name:
SELECT EMP_ID, LAST_NAME
FROM EMPLOYEE_TBL

 - 62 -

WHERE CITY = 'INDIANAPOLIS'
ORDER BY 1;
Displaying data for a given condition and sorting the output by multiple columns using integers, the
order of the columns in the sort is different than their corresponding order after the SELECT keyword:
SELECT EMP_ID, LAST_NAME
FROM EMPLOYEE_TBL
WHERE CITY = 'INDIANAPOLIS'
ORDER BY 2, 1;

Note When selecting all rows of data from a large table, the results could render a
substantial amount of data returned.

Counting the Records in a Table
A simple query can be issued on a table to get a quick count on the number of records in the table or on the
number of values for a column in the table. A count is accomplished by the function COUNT. Although
functions are not discussed until later in this book, this function should be introduced here because it is often
a part of one of the simplest queries that you can create.

The syntax of the COUNT function is as follows:
SELECT COUNT(*)
FROM TABLE_NAME;
The COUNT function is used with parentheses, which are used to enclose the target column to count or
the asterisk to count all rows of data in the table.
Counting the number of records in the PRODUCTS_TBL table:
Input
SELECT COUNT(*) FROM PRODUCTS_TBL;
Output
COUNT(*)

 9

1 row selected.
Counting the number of values for PROD_ID in the PRODUCTS_TBL table:
Input
SELECT COUNT(PROD_ID) FROM PRODUCTS_TBL;
Output
COUNT(PROD_ID)

 9

1 row selected.

Note Counting the number of values for a column is the same as counting the number
of records in a table, if the column being counted is NOT NULL (a required
column).

Selecting Data from Another User's Table
Permission must be granted to a user to access another user's table. If no permission has been granted,
access is not allowed by users that do not own the table. You can select data from another user's table after
access has been granted (the GRANT command is discussed in Hour 20, "Creating and Using Views and
Synonyms") to select from another user's table. To access another user's table in a SELECT statement, you
must precede the table name with the schema name or the username that owns the table, as in the following
example:

SELECT EMP_ID
FROM SCHEMA.EMPLOYEE_TBL;

 - 63 -

Note If a synonym exists in the database for the table to which you desire access, you
do not have to specify the schema name for the table. Synonyms are alternate
names for tables, which are discussed in Hour 21, "Working with the System
Catalog."

Column Aliases
 New Term Column aliases are used to rename a table's columns for the purpose of a particular query. The
PRODUCTS_TBL illustrates the use of column aliases.

SELECT COLUMN_NAME ALIAS_NAME
FROM TABLE_NAME;
The following example displays the product description twice, giving the second column an alias named
PRODUCT. Notice the column headers in the output.
Input
SELECT PROD_DESC,
 PROD_DESC PRODUCT
FROM PRODUCTS_TBL;
Output
PROD_DESC PRODUCT
------------------------- ------------------------
WITCHES COSTUME WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH PLASTIC PUMPKIN 18 INCH
FALSE PARAFFIN TEETH FALSE PARAFFIN TEETH
LIGHTED LANTERNS LIGHTED LANTERNS
ASSORTED COSTUMES ASSORTED COSTUMES
CANDY CORN CANDY CORN
PUMPKIN CANDY PUMPKIN CANDY
PLASTIC SPIDERS PLASTIC SPIDERS
ASSORTED MASKS ASSORTED MASKS
1234 KEY CHAIN
2345 OAK BOOKSHELF

11 rows selected.

Column aliases can be used to customize names for column headers, and can also be used to
reference a column with a shorter name in some SQL implementations.

Note When a column is renamed in a SELECT statement, the name is not apermanent
change. The change is for that particular SELECT statement.

Summary

You have been introduced to the database query, a means for obtaining useful information from a relational
database. The SELECT statement, which is known as the Data Query Language (DQL) command, is used to
create queries in SQL. The FROM clause must be included with every SELECT statement. You have learned
how to place a condition on a query using the WHERE clause and how to sort data using the ORDER BY
clause. You have learned the fundamentals of writing queries, and, after a few exercises, you should be
prepared to learn more about queries during the next hour.

Q&A
Q. Why won't the SELECT clause work without the FROM clause?
A. The SELECT clause merely tells the database what data you want to see.

The FROM clause tells the database where to get the data.
Q. When I use the ORDER BY clause and choose the option descending, what

does that really do to the data?

 - 64 -

A.

Say that you use the ORDER BY clause and have selected the last_name
from the EMPLOYEE_TBL. If you used the descending option, the order
would start with the letter Z and finish with the letter A. Now, let's say that
you have used the ORDER BY clause and have selected the salary from the
EMPLOYEE_PAY_TBL. If you used the descending option, the order would
start with the largest salary down to the lowest salary.

Q. What advantage is there to renaming columns?
A. The new column name could fit the description of the returned data more

closely for a particular report.

Workshop
The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. Name the required parts for any SELECT statement.
2. In the WHERE clause, are single quotation marks required for all the data?
3. Under what part of the SQL language does the SELECT statement (database

query) fall?
4. Can multiple conditions be used in the WHERE clause?

Exercises
1. Look over the following SELECT statements. Determine whether the syntax is

correct. If the syntax is incorrect, what would correct it? A table called
EMPLOYEE_TBL is used here.

a. SELECT EMP_ID, LAST_NAME, FIRST_NAME,
b. FROM EMPLOYEE_TBL;
c. SELECT EMP_ID, LAST_NAME
d. ORDER BY EMPLOYEE_TBL
e. FROM EMPLOYEE_TBL;
f. SELECT EMP_ID, LAST_NAME, FIRST_NAME
g. FROM EMPLOYEE_TBL
h. WHERE EMP_ID = '333333333'
i. ORDER BY EMP_ID;
j. SELECT EMP_ID SSN, LAST_NAME
k. FROM EMPLOYEE_TBL
l. WHERE EMP_ID = '333333333'
m. ORDER BY 1;
n. SELECT EMP_ID, LAST_NAME, FIRST_NAME
o. FROM EMPLOYEE_TBL
p. WHERE EMP_ID = '333333333'
q. ORDER BY 3, 1, 2;

Hour 8: Using Operators to Categorize Data
Overview

The highlights of this hour include
 What is an operator?
 An overview of operators in SQL
 How are operators used singularly?
 How are operators used in combinations?

 - 65 -

What Is an Operator in SQL?
 New Term An operator is a reserved word or a character used primarily in an SQL statement's WHERE
clause to perform operation(s), such as comparisons and arithmetic operations. Operators are used to
specify conditions in an SQL statement and to serve as conjunctions for multiple conditions in a statement.

The operators discussed during this hour are
 Comparison operators
 Logical operators
 Operators used to negate conditions
 Arithmetic operators

Comparison Operators
Comparison operators are used to test single values in an SQL statement. The comparison operators
discussed consist of =, <>, <, and >.

These operators are used to test
 Equality
 Non-equality
 Less-than values
 Greater-than values

Examples and the meanings of comparison operators are covered in the following sections.

Equality
The equal operator compares single values to one another in an SQL statement. The equal sign (=)
symbolizes equality. When testing for equality, the compared values must match exactly or no data is
returned. If two values are equal during a comparison for equality, the returned value for the comparison is
TRUE; the returned value is FALSE if equality is not found. This Boolean value (TRUE/FALSE) is used to
determine whether data is returned according to the condition.

The = operator can be used by itself or combined with other operators. An example and the meaning of
the equality operator follows:

Example Meaning
WHERE SALARY = '20000' Salary

equals
20000

The following query returns all rows of data where the PROD_ID is equal to 2345:
Input
SELECT *
FROM PRODUCTS_TBL
WHERE PROD_ID = '2345';
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
2345 OAK BOOKSHELF 59.99

1 row selected.

Non-Equality
For every equality, there is a non-equality. In SQL, the operator used to measure non-equality is <> (the
less-than sign combined with the greater-than sign). The condition returns TRUE if the condition finds non-
equality; FALSE is returned if equality is found.

Note Another option comparable to <> is !=. Many of the major implementations have
adopted != to represent not-equal. Check your particular implementation for the
usage.

 - 66 -

Example Meaning
WHERE SALARY <> '20000' Salary

does not
equal
20000

Input
SELECT *
FROM PRODUCTS_TBL
WHERE PROD_ID <> '2345';
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

11 rows selected.

Less-Than, Greater-Than
The symbols < (less-than) and > (greater-than) can be used by themselves, or in combination with each
other or other operators.

Example Meaning
WHERE SALARY < '20000' Salary is

less
than
20000

WHERE SALARY > '20000' Salary is
greater
than
20000

In the first example, anything less-than and not equal to 20000 returns TRUE. Any value of 20000 or
more returns FALSE. Greater-than works the opposite of less-than.
Input
SELECT *
FROM PRODUCTS_TBL
WHERE COST > 20;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99

 - 67 -

2345 OAK BOOKSHELF 59.99

2 rows selected.
In the next example, notice that the value 24.99 was not included in the query's result set. The less-
than operator is not inclusive.
Input
SELECT *
FROM PRODUCTS_TBL
WHERE COST < 24.99;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95

9 rows selected.

Combination Examples of Comparison Operators
The equal operator can be combined with the less-than and greater-than operators, as in the following
examples):

Example Meaning
WHERE SALARY <= '20000' Salary

less-
than or
equal-to

WHERE SALARY >= '20000' Salary
greater-
than or
equal-to

Less-than or equal-to 20000 includes 20000 and all values less than 20000. Any value in that range
returns TRUE; any value greater than 20000 returns FALSE. Greater-than or equal-to also includes the
value 20000 in this case and works the same as the less-than or equal-to.
Input
SELECT *
FROM PRODUCTS_TBL
WHERE COST <= 24.99;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1

 - 68 -

90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95

9 rows selected.

Logical Operators
 New Term Logical operators are those operators that use SQL keywords to make comparisons instead of
symbols. The logical operators covered in the following subsections are

 IS NULL
 BETWEEN
 IN
 LIKE
 EXISTS
 UNIQUE
 ALL and ANY

IS NULL
The NULL operator is used to compare a value with a NULL value. For example, you might look for
employees who do not have a pager by searching for NULL values in the PAGER column of the
EMPLOYEE_TBL table.

The following example shows comparing a value to a NULL value:

Example Meaning
WHERE SALARY IS NULL Salary

has no
value

The following example does not find a NULL value:

Example Meaning
WHERE SALARY = NULL Salary

has a
value
containi
ng the
letters
N-U-L-
L

Input
SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER
FROM EMPLOYEE_TBL
WHERE PAGER IS NULL;
Output
EMP_ID LAST_NAM FIRST_NA PAGER
--------- -------- -------- -----
311549902 STEPHENS TINA
442346889 PLEW LINDA
220984332 WALLACE MARIAH
443679012 SPURGEON TIFFANY

 - 69 -

4 rows selected.
Understand that the literal word "null" is different than a NULL value. Examine the following example:
Input
SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER
FROM EMPLOYEE_TBL
WHERE PAGER = NULL;
Output
no rows selected.
BETWEEN

The BETWEEN operator is used to search for values that are within a set of values, given the minimum value
and the maximum value. The minimum and maximum values are included as part of the conditional set.

Example Meaning
WHERE SALARY BETWEEN '20000' AND '30000' The salary

must fall
between
20000 and
30000,inclu
ding the
values
20000 and
30000

Input
SELECT *
FROM PRODUCTS_TBL
WHERE COST BETWEEN 5.95 AND 14.5;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
222 PLASTIC PUMPKIN 18 INCH 7.75
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
1234 KEY CHAIN 5.95

4 rows selected.
Notice that the values 5.95 and 14.5 are included in the output.

Note BETWEEN is inclusive and therefore includes the minimum and maximum values
in the query results.

IN
The IN operator is used to compare a value to a list of literal values that have been specified. For TRUE to be
returned, the compared value must match at least one of the values in the list.

Examples Meaning
WHERE SALARY IN ('20000', '30000','40000') The

salary
must
match
one of
the
values
20000,
30000,
or
40000

Input

 - 70 -

SELECT *
FROM PRODUCTS_TBL
WHERE PROD_ID IN ('13','9','87','119');
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
119 ASSORTED MASKS 4.95
87 PLASTIC SPIDERS 1.05
9 CANDY CORN 1.35
13 FALSE PARAFFIN TEETH 1.1

4 rows selected.
Using the IN operator can achieve the same results as using the OR operator and can return the results
more quickly.
LIKE

The LIKE operator is used to compare a value to similar values using wildcard operators. There are two
wildcards used in conjunction with the LIKE operator:

 The percent sign (%)
 The underscore (_)

The percent sign represents zero, one, or multiple characters. The underscore represents a single
number or character. The symbols can be used in combinations.

Examples are
WHERE SALARY LIKE
'200%' Finds any values that start with 200

WHERE SALARY LIKE
'%200%'

Finds any values that have 200 in any position

WHERE SALARY LIKE
'_00%'

Finds any values that have 00 in the second and third positions

WHERE SALARY LIKE
'2_%_%'

Finds any values that start with 2 and are at least 3 characters in
length

WHERE SALARY LIKE
'%2'

Finds any values that end with 2

WHERE SALARY LIKE
'_2%3'

Finds any values that have a 2 in the second position and end
with a 3

WHERE SALARY LIKE
'2___3'

Finds any values in a five-digit number that start with 2 and end
with 3

The following example shows all product descriptions that end with the letter S:
Input
SELECT PROD_DESC
FROM PRODUCTS_TBL
WHERE PROD_DESC LIKE '%S';
Output
PROD_DESC

LIGHTED LANTERNS
ASSORTED COSTUMES
PLASTIC SPIDERS
ASSORTED MASKS

 - 71 -

4 rows selected.

The following example shows all product descriptions whose second character is the letter S:
Input
SELECT PROD_DESC
FROM PRODUCTS_TBL
WHERE PROD_DESC LIKE '_S%';
Output
PROD_DESC

ASSORTED COSTUMES
ASSORTED MASKS

2 rows selected.
EXISTS

The EXISTS operator is used to search for the presence of a row in a specified table that meets certain
criteria.

Example Meaning
WHERE EXISTS (SELECT EMP_ID FROM EMPLOYEE_TBL WHERE
EMPLOYEE_ID ='333333333')

Searching to
see whether
the EMP_ID
333333333
3 is in the
EMPLOYEE_
TBL

The following example is a form of a subquery, which is further discussed during Hour 14, "Using
Subqueries to Define Unknown Data."
Input
SELECT COST
FROM PRODUCTS_TBL
WHERE EXISTS (SELECT COST
 FROM PRODUCTS_TBL
 WHERE COST > 100);
Output
No rows selected.

There were no rows selected because no records existed where the cost was greater than 100.

Consider the following example:
Input
SELECT COST
FROM PRODUCTS_TBL
WHERE EXISTS (SELECT COST
 FROM PRODUCTS_TBL
 WHERE COST < 100);
Output
COST

 29.99

 - 72 -

 7.75
 1.1
 14.5
 10
 1.35
 1.45
 1.05
 4.95
 5.95
 59.99

11 rows selected.

The cost was displayed for records in the table because records existed where the product cost was
less than 100.
UNIQUE

The UNIQUE operator searches every row of a specified table for uniqueness (no duplicates).

Example Meaning
WHERE UNIQUE (SELECT SALARY FROM EMPLOYEE_TBL WHERE
EMPLOYEE_ID ='333333333')

Testing
SALARY
to see
whether
there
are
duplicat
es

ALL and ANY OPERATORS
The ALL operator is used to compare a value to all values in another value set.

Example Meaning
WHERE SALARY > ALL (SELECT SALARY FROM EMPLOYEE TBL WHERE
CITY =' INDIANAPOLIS')

Testing
SALARY
to see
whether
it is
greater
than all
salaries
of the
employe
es living
in
Indianap
olis

Input
SELECT *
FROM PRODUCTS_TBL
WHERE COST > ALL (SELECT COST
 FROM PRODUCTS_TBL
 WHERE COST < 10);
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------

 - 73 -

11235 WITCHES COSTUME 29.99
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
2345 OAK BOOKSHELF 59.99

4 rows selected.

In this output, there were five records that had a cost greater than the cost of all records having a cost
less than 10.
The ANY operator is used to compare a value to any applicable value in the list according to the
condition.

Example Meaning
WHERE SALARY > ANY (SELECT SALARY FROM EMPLOYEE_TBL WHERE
CITY = 'INDIANAPOLIS')

Testing
SALARY
to see
whether
it is
greater
than any
of the
salaries
of
employe
es living
in
Indianap
olis

Input
SELECT *
FROM PRODUCTS_TBL
WHERE COST > ANY (SELECT COST
 FROM PRODUCTS_TBL
 WHERE COST < 10);
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

10 rows selected.
In this output, more records were returned than when using ALL, because the cost only had to be
greater than any of the costs that were less than 10. The one record that was not displayed had a cost
of 1.05, which was not greater than any of the values less than 10 (which was, in fact, 1.05).

 - 74 -

Conjunctive Operators
 New Term What if you want to used multiple conditions to narrow data in an SQL statement? You must be
able to combine the conditions, and you do this with what is call conjunctive operators. These operators are

 AND
 OR

These operators provide a means to make multiple comparisons with different operators in the same
SQL statement. The following sections describe each operator's behavior.
AND

The AND operator allows the existence of multiple conditions in an SQL statement's WHERE clause. For an
action to be taken by the SQL statement, whether it be a transaction or query, all conditions separated by the
AND must be TRUE.

Example Meaning
WHERE EMPLOYEE_ID = '333333333' AND SALARY = '20000' The

EMPLOYEE
_ID must
match
333333333
and the
SALARY
must equal
20000

Input
SELECT *
FROM PRODUCTS_TBL
WHERE COST > 10
 AND COST < 30;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
90 LIGHTED LANTERNS 14.5

2 rows selected.
In this output, the value for cost had to be both greater than 10 and less than 30 for data to be
retrieved.
Input
SELECT *
FROM PRODUCTS_TBL
WHERE PROD_ID = '7725'
 AND PROD_ID = '2345';
Output
no rows selected

This output retrieved no data because each row of data has only one product identification.
OR

The OR operator is used to combine multiple conditions in an SQL statement's WHERE clause. For an action
to be taken by the SQL statement, whether it be a transaction or query, at least one of the conditions that are
separated by OR must be TRUE.

Example Meaning
WHERE SALARY = '20000' OR SALARY = '30000' The SALARY

must match

 - 75 -

either 20000
or 30000

Note Each of the comparison and

logical operators can be used
singularly or in combination
with each other.

Input
SELECT *
FROM PRODUCTS_TBL
WHERE PROD_ID = '7725'
 OR PROD_ID = '2345'
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
2345 OAK BOOKSHELF 59.99

1 rows selected.
In this output, either one of the conditions had to be TRUE for data to be retrieved. Two records that met
either one or the other condition were found.

Tip When using multiple conditions and operators in an SQL statement, you may find
that it improves overall readability if parentheses are used to separate statements
into logical groups. However, be aware that the misuse of parentheses could
adversely affect your output results.

In the next example, notice the use of the AND and two OR operators. In addition, notice the logical
placement of the parentheses to make the statement more readable.
Input
SELECT *
FROM PRODUCTS_TBL
WHERE COST > 10
 AND (PROD_ID = '222'
 OR PROD_ID = '90'
 OR PROD_ID = '11235');
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
90 LIGHTED LANTERNS 14.5

2 rows selected.
The cost in this output had to be greater than 10, and the product identification had to be any one of the
three listed. A row was not returned for PROD_ID 222, because the cost for this identification was not
greater than 10.

Negating Conditions with the NOT Operator
Of all the conditions tested by the logical operators discussed here, there is a way to negate each one of
these operators to change the condition's viewpoint.

The NOT operator reverses the meaning of the logical operator with which it is used. The NOT can be
used with the following operators in the following methods:

 NOT EQUAL
 NOT BETWEEN
 NOT IN
 NOT LIKE

 - 76 -

 IS NOT NULL
 NOT EXISTS
 NOT UNIQUE

Each method is discussed in the following sections. First, let's look at how to test for inequality.

Not Equal
You have learned how to test for inequality using the <> operator. Inequality is worth mentioning in this
section because to test for it, you are actually negating the equality operator. The following is a second
method for testing inequality available in some SQL implementations:

Example Meaning
WHERE SALARY <> '20000' SALARY

does not
equal
20000

WHERE SALARY != '20000' SALARY
does not
equal
20000

In the second example, you can see that the exclamation mark is used to negate the equality
comparison. The use of the exclamation mark is allowed in addition to the standard operator for
inequality <> in some implementations.

Note Check your particular implementation for the use of the exclamation mark to
negate the inequality operator.

NOT BETWEEN
The BETWEEN operator is negated as follows:

Example Meaning
WHERE Salary NOT BETWEEN '20000' AND '30000' The

value for
SALARY
cannot
fall
between
20000
and
30000,
to
include
the
values
20000
and
30000

Input
SELECT *
FROM PRODUCTS_TBL
WHERE COST NOT BETWEEN 5.95 AND 14.5;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
13 FALSE PARAFFIN TEETH 1.1
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05

 - 77 -

119 ASSORTED MASKS 4.95
2345 OAK BOOKSHELF 59.99

7 rows selected.

Note Remember that BETWEEN is inclusive; therefore, in the previous example, any
rows that equal 5.95 or 14.50 are not included in the query results.

NOT IN
The IN operator is negated as NOT IN. All salaries in the following example that are not in the listed values,
if any, are returned:

Example Meaning
WHERE SALARY NOT IN ('20000', '30000', '40000') The

SALARY
cannot
be equal
to any of
the
given
values
for
action to
be taken

Input
SELECT *
FROM PRODUCTS_TBL
WHERE PROD_ID NOT IN ('13','9','87','119');
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
6 PUMPKIN CANDY 1.45
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99

7 rows selected.
In this output, records were not displayed for the listed identifications after the NOT IN operator.
NOT LIKE

The LIKE, or wildcard, operator is negated as NOT LIKE. When NOT LIKE is used, only values that are not
similar are returned. Examples include:

Example Meaning
WHERE SALARY NOT LIKE
'200%'

Finds any values that do not start with 200

WHERE SALARY NOT LIKE
'%200%'

Finds any values that do not have 200 in any position

WHERE SALARY NOT LIKE
'_00%'

Finds any values that have 00 starting in the second
position

WHERE SALARY NOT LIKE
'2_%_%'

Does not find any values that start with 2 and have a
length of 3 or greater

Input

 - 78 -

SELECT PROD_DESC
FROM PRODUCTS_TBL
WHERE PROD_DESC NOT LIKE 'L%';
Output
PROD_DESC

WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH
FALSE PARAFFIN TEETH
ASSORTED COSTUMES
CANDY CORN
PUMPKIN CANDY
PLASTIC SPIDERS
ASSORTED MASKS
KEY CHAIN
OAK BOOKSHELF

10 rows selected.
In this output, the product descriptions starting with the letter L were not displayed.
IS NOT NULL

The IS NULL operator is negated as IS NOT NULL to test for values that are not NULL.

Example Meaning
WHERE SALARY IS NOT NULL Only

NOT
NULL
rows are
returned

Input
SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER
FROM EMPLOYEE_TBL
WHERE PAGER IS NOT NULL;
Output
EMP_ID LAST_NAM FIRST_NA PAGER
--------- -------- -------- ----------
213764555 GLASS BRANDON 3175709980
313782439 GLASS JACOB 8887345678

2 rows selected.
NOT EXISTS

EXISTS is negated as NOT EXISTS.

Example Meaning
WHERE NOT EXISTS (SELECT EMP_ID FROM EMPLOYEE_TBL WHERE
EMP_ID ='333333333'

Searching to
see whether
the EMP_ID
3333333333
is not in the
EMPLOYEE_
TBL

Input

 - 79 -

SELECT MAX(COST)
FROM PRODUCTS_TBL
WHERE NOT EXISTS (SELECT COST
 FROM PRODUCTS_TBL
 WHERE COST > 100);
Output
 MAX(COST)

 59.99

The maximum cost for the table is displayed in this output because there were not any records that
existed where the cost was greater than 100.
NOT UNIQUE

The UNIQUE operator is negated as NOT UNIQUE.

Example Meaning
WHERE NOT UNIQUE (SELECT SALARY FROM EMPLOYEE_TBL) Testing

to see
whether
there
are
salaries
in the
table
that are
not
UNIQUE

Arithmetic Operators
Arithmetic operators are used to perform mathematical functions in SQL—the same as in most other
languages. There are four conventional operators for mathematical functions.

+ (addition)
- (subtraction)
* (multiplication)
/ (division)

Addition
Addition is performed through the use of the plus (+) symbol.

Example Meaning
SELECT SALARY + BONUS
FROM EMPLOYEE_PAY_TBL;

The SALARY column is added with the BONUS column for a
total for each row of data

SELECT SALARY FROM
EMPLOYEE_PAY_TBL WHERE
SALARY + BONUS >
'40000';

Returns all rows that are greater than the total of the SALARY
and BONUS columns

Subtraction
Subtraction is performed using the minus (-) symbol.

Example Meaning
SELECT SALARY - BONUS
FROM EMPLOYEE_PAY_TBL;

The BONUS column is subtracted from the SALARY column for
the difference

SELECT SALARY FROM
EMPLOYEE_PAY_TBL WHERE

Returns all rows where the SALARY minus the BONUS is
greater than 40000

 - 80 -

SALARY - BONUS >
'40000';

Multiplication
Multiplication is performed by using the asterisk (*) symbol.

Example Meaning
SELECT SALARY * 10 FROM EMPLOYEE_PAY_TBL; The

SALARY
column
is
multiplie
d by 10

SELECT SALARY FROM EMPLOYEE_PAY_TBL WHERE SALARY * 10 >
'40000';

Returns
all rows
where
the
product
of the
SALARY
multiplie
d by 10
is
greater
than
40000

The pay rate in the following example is multiplied by 1.1, which increases the current pay rate by 10
percent:
Input
SELECT EMP_ID, PAY_RATE, PAY_RATE * 1.1
FROM EMPLOYEE_PAY_TBL
WHERE PAY_RATE IS NOT NULL;
Output
EMP_ID PAY_RATE PAY_RATE*1.1
----------- -------- ------------
442346889 14.75 16.225
220984332 11 12.1
443679012 15 16.5

3 rows selected.

Division
Division is performed through the use of the slash (/) symbol.

Example Meaning
SELECT SALARY / 10 FROM EMPLOYEE_PAY_TBL; The

SALARY
column
is
divided
by 10

SELECT SALARY FROM EMPLOYEE_PAY_TBL WHERE SALARY / 10 >
'40000';

Returns
all rows
that are
greater

 - 81 -

than the
SALARY

SELECT SALARY FROM EMPLOYEE_PAY_TBL WHERE SALARY / 10 >
'40000'

Returns
all rows
where
the
salary
divided
by 10 is
greater
than
40000

Arithmetic Operator Combinations
The arithmetic operators can be used in combinations with one another. Remember the rules of precedence
in basic mathematics. Multiplication and division operations are performed first, and then addition and
subtraction operations. The only way the user has control over the order of the mathematical operations is
through the use of parentheses. Parentheses surrounding an expression cause that expression to be
evaluated as a block.

 New Term Precedence is the order in which expressions are resolved in a mathematical expression or
with embedded functions in SQL.

Expression Result
1 + 1 * 5 6
(1 + 1) * 5 10
10 - 4 / 2 + 1 9
(10 - 4) / (2 + 1) 2

In the following examples, notice that the placement of parentheses in an expression does not affect the
outcome if only multiplication and division are involved. Precedence is not a factor in these cases.
Although it may not appear to make sense, it is possible that some implementations of SQL do not
follow the ANSI standard in cases like this, however unlikely.

Expression Result
4 * 6 / 2 12
(4 * 6) / 2 12
4 * (6 / 3) 12

The following are some more examples:
SELECT SALARY * 10 + 1000
FROM EMPLOYEE_PAY_TBL
WHERE SALARY > 20000;
SELECT SALARY / 52 + BONUS
FROM EMPLOYEE_PAY_TBL;
SELECT (SALARY - 1000 + BONUS) / 52 * 1.1
FROM EMPLOYEE_PAY_TBL;

The following is a rather wild example:
SELECT SALARY
FROM EMPLOYEE_PAY_TBL
WHERE SALARY < BONUS * 3 + 10 / 2 - 50;
Because parentheses are not used, mathematical precedence takes effect, altering the value for BONUS
tremendously for the condition.

Warning When combining arithmetic operators, remember to consider the rules of
precedence. The absence of parentheses in a statement could render

 - 82 -

inaccurate results.

Summary
You have been introduced to various operators available in SQL. You have learned the hows and whys of
operators. You have seen examples of operators being used by themselves and in various combinations with
one another, using the conjunctive-type operators AND and OR. You have learned the basic arithmetic
functions: addition, subtraction, multiplication, and division. Comparison operators are used to test equality,
inequality, less-than values, and greater-than values. Logical operators include BETWEEN, IN, LIKE, EXIST,
ANY, and ALL. You are already experiencing how elements are added to SQL statements to further specify
conditions and better control the processing and retrieving capabilities provided with SQL.

Q&A
Q. Can I have more than one AND in the WHERE clause?
A.

Yes. In fact, all the operators can be used multiple times. An example would
be

SELECT SALARY
FROM EMPLOYEE_PAY_TBL
WHERE SALARY > 20000
AND BONUS BETWEEN 1000 AND 3000
AND POSITION = 'VICE PRESIDENT'

Q. What happens if I use single quotation marks around a NUMBER datatype in
a WHERE clause?

A. Your query still processes. Quotation marks are not necessary for NUMBER
fields.

Workshop
The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. True or false: Both conditions when using the OR operator must be TRUE.
2. True or false: All specified values must match when using the IN operator.
3. True or false: The AND operator can be used in the SELECT and the WHERE

clauses.
4. What, if anything, is wrong with the following SELECT statements?

a. SELECT SALARY
b. FROM EMPLOYEE_PAY_TBL
c. WHERE SALARY BETWEEN 20000, 30000
d. SELECT SALARY + DATE_HIRE
e. FROM EMPLOYEE_PAY_TBL
f. SELECT SALARY, BONUS
g. FROM EMPLOYEE_PAY_TBL
h. WHERE DATE_HIRE BETWEEN 22-SEP-99
i. AND 23-NOV-99
j. AND POSITION = 'SALES'
k. OR POSITION = 'MARKETING'
l. AND EMPLOYEE_ID LIKE '%55%

Exercises
1. Using the following CUSTOMER_TBL:
2. DESCRIBE CUSTOMER_TBL
3.

 - 83 -

4. Name Null? Type
5. -------------------------------- -------- ------------
6. CUST_ID NOT NULL VARCHAR2(10)
7. CUST_NAME NOT NULL VARCHAR2(30)
8. CUST_ADDRESS NOT NULL VARCHAR2(20)
9. CUST_CITY NOT NULL VARCHAR2(12)
10. CUST_STATE NOT NULL CHAR(2)
11. CUST_ZIP NOT NULL CHAR(5)
12. CUST_PHONE NUMBER(10)

 CUST_FAX NUMBER(10)

Write a SELECT statement that returns customer IDs and customer names (alpha order)
for customers who live in Indiana, Ohio, Michigan, and Illinois, and whose names begin
with the letters A or B.

13. Using the following PRODUCTS_TBL:
14. DESCRIBE PRODUCTS_TBL
15.
16. Name Null? Type
17. ------------------------------- ---------------------
18. PROD_ID NOT NULL VARCHAR2(10)
19. PROD_DESC NOT NULL VARCHAR2(25)

COST NOT NULL NUMBER(6,2)

Write a SELECT statement that returns the product ID, PROD_DESC, and the product cost.
Limit the product cost to range from $1.00 and $12.50.

Hour 9: Summarizing Data Results from a Query
Overview

In this hour, you learn about SQL's aggregate functions. You can perform a variety of useful functions with
aggregate functions.

What Are Aggregate Functions?
 New Term Functions are keywords in SQL used to manipulate values within columns for output purposes. A
function is a command always used in conjunction with a column name or expression. There are several
types of functions in SQL. This hour covers aggregate functions. An aggregate function is used to provide
summarization information for an SQL statement, such as counts, totals, and averages.

The aggregate functions discussed in this hour are
 COUNT
 SUM
 MAX
 MIN
 AVG

The following queries show the data used for most of this hour's examples:
Input
SELECT *
FROM PRODUCTS_TBL;
Output
PROD_ID PROD_DESC COST
---------- ------------------------------ ------
11235 WITCHES COSTUME 29.99
222 PLASTIC PUMPKIN 18 INCH 7.75
13 FALSE PARAFFIN TEETH 1.1

 - 84 -

90 LIGHTED LANTERNS 14.5
15 ASSORTED COSTUMES 10
9 CANDY CORN 1.35
6 PUMPKIN CANDY 1.45
87 PLASTIC SPIDERS 1.05
119 ASSORTED MASKS 4.95
1234 KEY CHAIN 5.95
2345 OAK BOOKSHELF 59.99
11 rows selected.

Some employees do not have a pager number in the results of the following query:
Input
SELECT EMP_ID, LAST_NAME, FIRST_NAME, PAGER
FROM EMPLOYEE_TBL;
Output
EMP_ID LAST_NAM FIRST_NA PAGER
--------- -------- -------- ----------
311549902 STEPHENS TINA
442346889 PLEW LINDA
213764555 GLASS BRANDON 3175709980
313782439 GLASS JACOB 8887345678
220984332 WALLACE MARIAH
443679012 SPURGEON TIFFANY
6 rows selected.
The COUNT Function

The COUNT function is used to count rows or values of a column that do not contain a NULL value. When
used with a query, the COUNT function returns a numeric value. When the COUNT function is used with the
DISTINCT command, only the distinct rows are counted. ALL (opposite of DISTINCT) is the default; it is not
necessary to include ALL in the syntax. Duplicate rows are counted if DISTINCT is not specified. One other
option with the COUNT function is to use COUNT with an asterisk. COUNT, when used with an asterisk, counts
all the rows of a table including duplicates, whether a NULL value is contained in a column or not.

The syntax for the COUNT function is as follows:
COUNT [(*) | (DISTINCT | ALL)] (COLUMN NAME)

Note The DISTINCT command cannot be used with COUNT(*), only with the
COUNT(column_name).

Example Meaning
SELECT COUNT(EMPLOYEE_ID) FROM EMPLOYEE_PAY_ID Counts

all
employe
e IDs

SELECT COUNT(DISTINCT SALARY) FROM EMPLOYEE_PAY_TBL Counts
only the
distinct
rows

SELECT COUNT(ALL SALARY) FROM EMPLOYEE_PAY_TBL Counts
all rows
for
SALARY

SELECT COUNT(*) FROM EMPLOYEE_TBL Counts
all rows
of the

 - 85 -

EMPLOY
EE table

COUNT(*) is used in the following example to get a count of all records in the EMPLOYEE_TBL table.
There are six employees
Input
SELECT COUNT(*)
FROM EMPLOYEE_TBL;
Output
COUNT(*)

 6
COUNT(EMP_ID) is used in the next example to get a count of all of the employee identifications that
exist in the table. The returned count is the same as the last query because all employees have an
identification number.
Input
SELECT COUNT(EMP_ID)
FROM EMPLOYEE_TBL;
Output
COUNT(EMP_ID)

 6
COUNT(PAGER) is used in the following example to get a count of all of the employee records that have
a pager number. Only two employees had pager numbers.
Input
SELECT COUNT(PAGER)
FROM EMPLOYEE_TBL;
Output
COUNT(PAGER)

 2
The ORDERS_TBL table, shown next, is used in the following COUNT example:
Input
SELECT *
FROM ORDERS_TBL;
Output
ORD_NUM CUST_ID PROD_ID QTY ORD_DATE_
---------- ---------- ----------------- -------------
56A901 232 11235 1 22-OCT-99
56A917 12 907 100 30-SEP-99
32A132 43 222 25 10-OCT-99
16C17 090 222 2 17-OCT-99
18D778 287 90 10 17-OCT-99
23E934 432 13 20 15-OCT-99
90C461 560 1234 2

7 rows selected.
This last example obtains a count of all distinct product identifications in the ORDERS_TBL table.
Input
SELECT COUNT(DISTINCT(PROD_ID))

 - 86 -

FROM ORDERS_TBL;
Output
COUNT(DISTINCT(PROD_ID))

 6
The PROD_ID 222 has two entries in the table, thus reducing the distinct values from 7 to 6.

Note Because the COUNT function counts the rows, data types do not play a part. The
rows can contain columns with any data type.

The SUM Function
The SUM function is used to return a total on the values of a column for a group of rows. The SUM function
can also be used in conjunction with DISTINCT. When SUM is used with DISTINCT, only the distinct rows
are totaled, which may not have much purpose. Your total is not accurate in that case, because rows of data
are omitted.

The syntax for the SUM function is as follows:
SUM ([DISTINCT] COLUMN NAME)

Note The value of an argument must be numeric to use the SUM function. The SUM
function cannot be used on columns having a data type other than numeric, such
as character or date

Example Meaning
SELECT SUM(SALARY) FROM EMPLOYEE_PAY_TBL Totals

the
salaries

SELECT SUM(DISTINCT SALARY) FROM EMPLOYEE_PAY_TBL Totals
the
distinct
salaries

The sum, or total amount of all cost values, is being retrieved from the PRODUCTS_TBL table.
Input
SELECT SUM(COST)
FROM PRODUCTS_TBL;
Output
 SUM(COST)

 163.07
The AVG Function

The AVG function is used to find averages for a group of rows. When used with the DISTINCT command, the
AVG function returns the average of the distinct rows. The syntax for the AVG function is as follows:

AVG ([DISTINCT] COLUMN NAME)
Note The value of the argument must be numeric for the AVG function to work.

Example Meaning
SELECT AVG(SALARY) FROM EMPLOYEE_PAY_TBL Returns the

average salary
SELECT AVG(DISTINCT SALARY) average salary Returns the

distinct FROM
EMPLOYEE_PAY_
TBL

The average value for all values in the PRODUCTS_TBL table's COST column is being retrieved in the
following example.
Input
SELECT AVG(COST)
FROM PRODUCTS_TBL;

 - 87 -

Output
 AVG(COST)

13.5891667

Note In some implementations, the results of your query may be truncated to the
precision of the data type.

The next example uses two aggregate functions in the same query. Because some employees are paid
hourly and others paid salary, you want to retrieve the average value for both PAY_RATE and SALARY.
Input
SELECT AVG(PAY_RATE), AVG(SALARY)
FROM EMPLOYEE_PAY_TBL;
Output
AVG(PAY_RATE) AVG(SALARY)
------------- -----------
 13.5833333 30000
The MAX Function

The MAX function is used to return the maximum value for the values of a column in a group of rows. NULL
values are ignored when using the MAX function. The DISTINCT command is an option. However, because
the maximum value for all the rows is the same as the distinct maximum value, it is useless.

MAX([DISTINCT] COLUMN NAME)

Example Meaning
SELECT MAX(SALARY) FROM EMPLOYEE_PAY_TBL Returns

the
highest
salary

SELECT MAX(DISTINCT SALARY) FROM EMPLOYEE_PAY_TBL Returns
the
highest
distinct
salary

The following example returns the maximum value for the COST column in the PRODUCTS_TBL table:
Input
SELECT MAX(COST)
FROM PRODUCTS_TBL;
Output
 MAX(COST)

 59.99
The MIN Function

The MIN function returns the minimum value of a column for a group of rows. NULL values are ignored when
using the MIN function. The DISTINCT command is an option. However, because the minimum value for all
rows is the same as the minimum value for distinct rows, it is useless.

MIN([DISTINCT] COLUMN NAME)

Example Meaning
SELECT MIN(SALARY) FROM EMPLOYEE_PAY_TBL Returns

the
lowest
salary

SELECT MIN(DISTINCT SALARY) FROM EMPLOYEE_PAY_TBL Returns
the
lowest

 - 88 -

distinct
salary

The following example returns the minimum value for the COST column in the PRODUCTS_TBL table:
Input
SELECT MIN(COST)
FROM PRODUCTS_TBL;
Output
 MIN(COST)

 1.05

Warning One very important thing to keep in mind when using aggregate functions
with the DISTINCT command is that your query may not return the desired
results. The purpose of aggregate functions is to return summarized data
based on all rows of data in a table.

The final example combines aggregate functions with the use of arithmetic operators:
Input
SELECT COUNT(ORD_NUM), SUM(QTY),
 SUM(QTY) / COUNT(ORD_NUM) AVG_QTY
FROM ORDERS_TBL;
Output
COUNT(ORD_NUM) SUM(QTY) AVG_QTY
-------------- ---------- ----------
 7 160 22.857143

You have performed a count on all order numbers, figured the sum of all quantities ordered, and, by
dividing the two figures, have derived the average quantity of an item per order. You also created a
column alias for the computation—AVG_QTY.

Summary

Aggregate functions can be very useful and are quite simple to use. You have learned how to count values in
columns, count rows of data in a table, get the maximum and minimum values for a column, figure the sum
of the values in a column, and figure the average value for values in a column. Remember that NULL values
are not considered when using aggregate functions, except when using the COUNT function in the format
COUNT(*).

Aggregate functions are the first functions in SQL that you have learned, but more follow. Aggregate
functions can also be used for group values, which is discussed the next hour. As you learn about other
functions, you see that the syntaxes of most functions are similar to one another and that their concepts
of use are relatively easy to understand.

Q&A

Q. Why are NULL values ignored when using the MAX or MIN function?
A. A NULL value means that nothing is there.
Q. Why don't data types matter when using the COUNT function?
A. The COUNT function only counts rows.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

 - 89 -

Quiz
1. True or false: The AVG function returns an average of all rows from a select

column including any NULL values.
2. True or false: The SUM function is used to add column totals.
3. True or false: The COUNT(*) function counts all rows in a table.
4. Will the following SELECT statements work? If not, what will fix the statements?

a. SELECT COUNT *
b. FROM EMPLOYEE_PAY_TBL;
c. SELECT COUNT(EMPLOYEE_ID), SALARY
d. FROM EMPLOYEE_PAY_TBL;
e. SELECT MIN(BONUS), MAX(SALARY)
f. FROM EMPLOYEE_PAY_TBL
g. WHERE SALARY > 20000;

Exercises
1. Using the following EMPLOYEE_PAY_TBL:

2. EMP_ID POSITION DATE_HIRE PAY_RATE DATE_LAST
SALARY BONUS

3. --------- ------------- --------- -------- ----------- --------- ---------
4. 311549902 MARKETING 23-MAY-89 01-MAY-99 30000

2000
5. 442346889 TEAM LEADER 17-JUN-90 14.75 01-JUN-99
6. 213764555 SALES MANAGER 14-AUG-94 01-AUG-99 40000

3000
7. 313782439 SALESMAN 28-JUN-97 20000 1000
8. 220984332 SHIPPER 22-JUL-96 11 01-JUL-99
9. 443679012 SHIPPER 14-JAN-91 15 01-JAN-99
10.

6 rows selected.
 Construct SQL statements to find:

b. The average salary
c. The maximum bonus
d. The total salaries
e. The minimum pay rate
f. The total rows in the table

Hour 10: Sorting and Grouping Data
Overview

You have learned how to query the database and return data in an organized fashion. You have learned how
to sort data from a query. During this hour, you learn how to break returned data from a query into groups for
improved readability.

Why Group Data?
Grouping data is the process of combining columns with duplicate values in a logical order. For example, a
database may contain information about employees; many employees live in different cities, while some
employees live in the same city. You may want to execute a query that shows employee information for each
particular city. You are grouping employee information by city, and a summarized report is created.

Suppose that you wanted to figure the average salary paid to employees according to each city. You
would do this by using the aggregate function AVG on the SALARY column, as you learned last hour,
and by using the GROUP BY clause to group the output by city.
Grouping data is accomplished through the use of the GROUP BY clause of a SELECT statement
(query). Last hour, you learned how to use aggregate functions. During this lesson, you see how
aggregate functions are used in conjunction with the GROUP BY clause for the database to display
results more effectively.

 - 90 -

The GROUP BY Clause

The GROUP BY clause is used in collaboration with the SELECT statement to arrange identical data into
groups. The GROUP BY clause follows the WHERE clause in a SELECT statement and precedes the ORDER
BY clause.

The position of the GROUP BY clause in a query is as follows:

SELECT
FROM
WHERE
GROUP BY
ORDER BY
The GROUP BY clause must follow the conditions in the WHERE clause and must precede the ORDER BY
clause if one is used.
The following is the SELECT statement's syntax, including the GROUP BY clause:
SELECT COLUMN1, COLUMN2
FROM TABLE1, TABLE2
WHERE CONDITIONS
GROUP BY COLUMN1, COLUMN2
ORDER BY COLUMN1, COLUMN2
The following sections give examples and explanations of the GROUP BY clause's use in a variety of
situations.

Grouping Selected Data
Grouping data is a simple process. The selected columns (the column list following the SELECT keyword in a
query) are the columns that can be referenced in the GROUP BY clause. If a column is not found in the
SELECT statement, it cannot be used in the GROUP BY clause. This is logical if you think about it—how can
you group data on a report if the data is not displayed?

If the column name has been qualified, the qualified name must go into the GROUP BY clause. The
column name can also be represented by a number, which is discussed later in this hour. When
grouping the data, the order of columns grouped does not have to match the column order in the
SELECT clause.

Group Functions
Typical group functions—those that are used with the GROUP BY clause to arrange data in groups—include
AVG, MAX, MIN, SUM, and COUNT. These are the aggregate functions that you learned about during Hour 9,
"Summarizing Data Results from a Query." Remember that the aggregate functions were used for single
values in Hour 9; now, you use the aggregate functions for group values.

Creating Groups and Using Aggregate Functions
There are conditions that the SELECT clause has that must be met when using GROUP BY. Specifically,
whatever columns are selected must appear in the GROUP BY clause, except for any aggregate values. The
columns in the GROUP BY clause do not necessarily have to be in the same order as they appear in the
SELECT clause. Should the columns in the SELECT clause be qualified, the qualified names of the columns
must be used in the GROUP BY clause. The following are some examples of syntax for the GROUP BY
clause:

Example
SELECT EMP_ID, CITY
FROM EMPLOYEE_TBL
GROUP BY CITY, EMP_ID;
Analysis
The SQL statement selects the EMP_ID and the CITY from the EMPLOYEE_TBL and groups the data
returned by the CITY and then RMP_ID.

 - 91 -

Note Note the order of the columns selected, versus the order of the columns in the
GROUP BY clause.

Example
SELECT EMP_ID, SUM(SALARY)
FROM EMPLOYEE_PAY_TBL
GROUP BY SALARY, EMP_ID;
Analysis
This SQL statement returns the EMP_ID and the total of the salary groups, as well as groups both the
salaries and employee IDs.
Example
SELECT SUM(SALARY)
FROM EMPLOYEE_PAY_TBL;
Analysis
This SQL statement returns the total of all the salaries from the EMPLOYEE_PAY_TBL.
Example
SELECT SUM(SALARY)
FROM EMPLOYEE_PAY_TBL
GROUP BY SALARY;
Analysis

This SQL statement returns the totals for the different groups of salaries.
Practical examples using real data follow. In this first example, you can see that there are three distinct
cities in the EMPLOYEE_TBL table.
Input
SELECT CITY
FROM EMPLOYEE_TBL;
Output
CITY

GREENWOOD
INDIANAPOLIS
WHITELAND
INDIANAPOLIS
INDIANAPOLIS
INDIANAPOLIS

6 rows selected.
In the following example, you select the city and a count of all records for each city. You see a count on
each of the three distinct cities because you are using a GROUP BY clause.
Input
SELECT CITY, COUNT(*)
FROM EMPLOYEE_TBL
GROUP BY CITY;
Output
CITY COUNT(*)
-------------- --------
GREENWOOD 1
INDIANAPOLIS 4
WHITELAND 1

 - 92 -

3 rows selected.
The following is a query from a temporary table created based on EMPLOYEE_TBL and
EMPLOYEE_PAY_TBL. You will soon learn how to join two tables for a query.
Input
SELECT *
FROM EMP_PAY_TMP;
Output
CITY LAST_NAM FIRST_NA PAY_RATE SALARY
------------ -------- ---------- ------------ ------
GREENWOOD STEPHENS TINA 30000
INDIANAPOLIS PLEW LINDA 14.75
WHITELAND GLASS BRANDON 40000
INDIANAPOLIS GLASS JACOB 20000
INDIANAPOLIS WALLACE MARIAH 11
INDIANAPOLIS SPURGEON TIFFANY 15

6 rows selected.
In the following example, you retrieve the average pay rate and salary on each distinct city using the
aggregate function AVG. There is no average pay rate for GREENWOOD or WHITELAND, because no
employees living in those cities are paid hourly.
Input
SELECT CITY, AVG(PAY_RATE), AVG(SALARY)
FROM EMP_PAY_TMP
GROUP BY CITY;
Output
CITY AVG(PAY_RATE) AVG(SALARY)
------------ ------------- -----------
GREENWOOD 30000
INDIANAPOLIS 13.5833333 20000
WHITELAND 40000

3 rows selected.
In the next example, you combine the use of multiple components in a query to return grouped data.
You still want to see the average pay rate and salary, but only for INDIANAPOLIS and WHITELAND.
You group the data by CITY, of which you have no choice because you are using aggregate functions
on the other columns. Lastly, you want to order the report by 2, and then 3, which is the average pay
rate, and then average salary. Study the following details and output.
Input
SELECT CITY, AVG(PAY_RATE), AVG(SALARY)
FROM EMP_PAY_TMP
WHERE CITY IN ('INDIANAPOLIS','WHITELAND')
GROUP BY CITY
ORDER BY 2,3;
Output
CITY AVG(PAY_RATE) AVG(SALARY)
------------ ------------- -----------
INDIANAPOLIS 13.5833333 20000
WHITELAND 40000

 - 93 -

Values are sorted before NULL values; therefore, the record for INDIANAPOLIS was displayed first.
GREENWOOD was not selected, but if it were, its record would have been displayed before WHITELAND's
record because GREENWOOD's average salary is $30,000 (the second sort in the ORDER BY clause was
on average salary).
The last example in this section shows the use of the MAX and MIN aggregate functions with the GROUP
BY clause.
Input
SELECT CITY, MAX(PAY_RATE), MIN(SALARY)
FROM EMP_PAY_TMP
GROUP BY CITY;
Output
CITY MAX(PAY_RATE) MIN(SALARY)
------------ ------------- -----------
GREENWOOD 30000
INDIANAPOLIS 15 20000
WHITELAND 40000

3 rows selected.

Representing Column Names with Numbers
Unlike the ORDER BY clause the GROUP BY clause cannot be ordered by using an integer to represent the
column name—except when using a UNION and the column names are different. The following is an
example of representing column names with numbers:

SELECT EMP_ID, SUM(SALARY)
FROM EMPLOYEE_PAY_TBL
UNION
SELECT EMP_ID, SUM(PAY_RATE)
FROM EMPLOYEE_PAY_TBL
GROUP BY 2, 1;
This SQL statement returns the employee ID and the group totals for the salaries. When using the
UNION operator, the results of the two SELECT statements are merged into one result set. The GROUP
BY is performed on the entire result set. The order for the groupings is 2 representing salary, and 1
representing EMP_ID.

GROUP BY Versus ORDER BY

You should understand that the GROUP BY clause works the same as the ORDER BY clause in that both are
used to sort data. The ORDER BY clause is specifically used to sort data from a query; the GROUP BY clause
also sorts data from a query to properly group the data. Therefore, the GROUP BY clause can be used to sort
data the same as ORDER BY.

There are some differences and disadvantages of using GROUP BY for sorting operations:
 All non-aggregate columns selected must be listed in the GROUP BY clause.
 Integers cannot be used in the GROUP BY to represent columns after the SELECT

keyword, similar to using the ORDER BY clause.
 The GROUP BY clause is generally not necessary unless using aggregate functions.

An example of performing sort operations utilizing the GROUP BY clause in place of the ORDER BY
clause is shown next:
Input
SELECT LAST_NAME, FIRST_NAME, CITY
FROM EMPLOYEE_TBL
GROUP BY LAST_NAME;
Output
SELECT LAST_NAME, FIRST_NAME, CITY

 - 94 -

 *
ERROR at line 1:
ORA-00979: not a GROUP BY expression
In this example, an error was received from the database server stating that FIRST_NAME is not a
GROUP BY expression. Remember that all columns and expressions in the SELECT must be listed in the
GROUP BY clause, with the exception of aggregate columns (those columns targeted by an aggregate
function).
In the next example, the previous problem is solved by adding all expressions in the SELECT to the
GROUP BY clause:
Input
SELECT LAST_NAME, FIRST_NAME, CITY
FROM EMPLOYEE_TBL
GROUP BY LAST_NAME, FIRST_NAME, CITY;
Output
LAST_NAM FIRST_NA CITY
-------- -------- ------------
GLASS BRANDON WHITELAND
GLASS JACOB INDIANAPOLIS
PLEW LINDA INDIANAPOLIS
SPURGEON TIFFANY INDIANAPOLIS
STEPHENS TINA GREENWOOD
WALLACE MARIAH INDIANAPOLIS

6 rows selected.
In this example, the same columns were selected from the same table, but all columns in the GROUP BY
clause are listed as they appeared after the SELECT keyword. The results were ordered by LAST_NAME
first, FIRST_NAME second, and CITY third. These results could have been accomplished easier with
the ORDER BY clause; however, it may help you better understand how the GROUP BY works if you can
visualize how it must first sort data to group data results.
The following example shows a SELECT from EMPLOYEE_TBL and uses the GROUP BY to order by
CITY, which leads into the next example.
Input
SELECT CITY, LAST_NAME
FROM EMPLOYEE_TBL
GROUP BY CITY, LAST_NAME;
Output
CITY LAST_NAM
------------ ---------
GREENWOOD STEPHENS
INDIANAPOLIS GLASS
INDIANAPOLIS PLEW
INDIANAPOLIS SPURGEON
INDIANAPOLIS WALLACE
WHITELAND GLASS

6 rows selected.
Notice the order of data in the previous results, as well as the LAST_NAME of the individual for each
CITY. All employee records in the EMPLOYEE_TBL table are now counted, and the results are grouped
by CITY but ordered by the count on each city first.
Input

 - 95 -

SELECT CITY, COUNT(*)
FROM EMPLOYEE_TBL
GROUP BY CITY
ORDER BY 2,1;
Output
CITY COUNT(*)
-------------- --------
GREENWOOD 1
WHITELAND 1
INDIANAPOLIS 4
Notice the order of the results. The results were first sorted by the count on each city (1–4), and then by
city. The count for the first two cities in the output is 1. Because the count is the same, which is the first
expression in the ORDER BY clause, the city is then sorted; GREENWOOD is placed before WHITELAND.
Although GROUP BY and ORDER BY perform a similar function, there is one major difference. The
GROUP BY is designed to group identical data, while the ORDER BY is designed merely to put data into
a specific order. GROUP BY and ORDER BY can be used in the same SELECT statement, but must
follow a specific order. The GROUP BY clause is always placed before the ORDER BY clause in the
SELECT statement.

Tip The GROUP BY clause can be used in the CREATE VIEW statement to sort data,
but the ORDER BY clause is not allowed in the CREATE VIEW statement. The
CREATE VIEW statement is discussed in depth in Hour 20, "Creating and Using
Views and Synonyms."

The HAVING Clause

The HAVING clause, when used in conjunction with the GROUP BY in a SELECT statement, tells GROUP BY
which groups to include in the output. HAVING is to GROUP BY as WHERE is to SELECT. In other words, the
WHERE clause places conditions on the selected columns, whereas the HAVING clause places conditions on
groups created by the GROUP BY clause.

The following is the position of the HAVING clause in a query:
SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY
The HAVING clause must follow the GROUP BY clause in a query and must also precede the ORDER BY
clause if used.
The following is the syntax of the SELECT statement, including the HAVING clause:

SELECT COLUMN1, COLUMN2
FROM TABLE1, TABLE2
WHERE CONDITIONS
GROUP BY COLUMN1, COLUMN2
HAVING CONDITIONS
ORDER BY COLUMN1, COLUMN2
In the following example, you select the average pay rate and salary for all cities except GREENWOOD.
You group the output by CITY, but only want to display those groups (cities) that have an average
salary greater than $20,000. You sort the results by average salary for each city.
Input
SELECT CITY, AVG(PAY_RATE), AVG(SALARY)
FROM EMP_PAY_TMP
WHERE CITY <> 'GREENWOOD'

 - 96 -

GROUP BY CITY
HAVING AVG(SALARY) > 20000
ORDER BY 3;
Output
CITY AVG(PAY_RATE) AVG(SALARY)
------------ ------------- -----------
WHITELAND 40000

1 row selected.

Why was only one row returned by this query?
 The city GREENWOOD was eliminated from the WHERE clause.
 INDIANAPOLIS was deducted from the output because the average salary was

20000, which is not greater than 20000.

Summary
You have learned how to group the results of a query using the GROUP BY clause. The GROUP BY clause is
primarily used with aggregate SQL functions like SUM, AVG, MAX, MIN, and COUNT. The nature of GROUP BY
is like that of ORDER BY in that both sort query results. The GROUP BY clause must sort data to group results
logically, but can also be used exclusively to sort data, although an ORDER BY is much simpler for this
purpose.

The HAVING clause, an extension to the GROUP BY clause, is used to place conditions on the
established groups of a query. The WHERE clause is used to place conditions on a query's SELECT
clause. During the next hour, you learn a new arsenal of functions that allow you to further manipulate
query results.

Q&A

Q. Is using the GROUP BY clause mandatory when using the ORDER BY clause
in a SELECT statement?

A. No. Using the GROUP BY clause is strictly optional, but it can be very useful
when used with ORDER BY.

Q. What is a group value?
A.

Take the CITY column from the EMPLOYEE_TBL. If you select the
employee's name and city, and then group the output by city, all the cities
that are identical are arranged together.

Q. Must a column appear in the SELECT statement to GROUP BY it?
A. Yes, a column must be in the SELECT statement to GROUP BY it.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. Will the following SQL statements work?

a. SELECT SUM(SALARY), EMP_ID
b. FROM EMPLOYEE_PAY_TBL
c. GROUP BY 1 and 2;
d. SELECT EMP_ID, MAX(SALARY)
e. FROM EMPLOYEE_PAY_TBL
f. GROUP BY SALARY, EMP_ID;
g. SELECT EMP_ID, COUNT(SALARY)
h. FROM EMPLOYEE_PAY_TBL

 - 97 -

i. ORDER BY EMP_ID
j. GROUP BY SALARY;

2. True or false: You must also use the GROUP BY clause when using the HAVING
clause.

3. True or false: The following SQL statement returns a total of the salaries by
groups:

4. SELECT SUM(SALARY)
FROM EMPLOYEE_PAY_TBL;

5. True or false: The columns selected must appear in the GROUP BY clause in the
same order.

6. True or false: The HAVING clause tells the GROUP BY which groups to include.

Exercises
1. Write an SQL statement that returns the employee ID, employee name, and city

from the EMPLOYEE_TBL. Group by the CITY column first.
2. Write an SQL statement that returns the city and a count of all employees per city

from EMPLOYEE_TBL. Add a HAVING clause to display only those cities that have
a count of more than two employees.

Hour 11: Restructuring the Appearance of Data
Overview

During this hour, you learn how to restructure the appearance of output results using a wide array of
functions, some ANSI standard functions, and other functions based on the standard and several variations
used by some major SQL implementations.

The Concepts of ANSI Character Functions
 New Term Character functions are functions used to represent strings in SQL in formats alternate to how
they are stored in the table. The first part of this hour discusses the concepts for character functions as
covered by ANSI. The second part of this hour shows real-world examples using functions that are specific to
various SQL implementations. ANSI functions discussed in this hour include CONCATENATION, SUBSTRING,
TRANSLATE, REPLACE, UPPER, and LOWER.

Concatenation
 New Term Concatenation is the process of combining two separate strings into one string. For example,
you may want to concatenate an individual's first and last names into a single string for the complete name.

JOHN concatenated with SMITH = JOHN SMITH

Substring
The concept of substring is the capability to extract part of a string, or a "sub" of the string. For example, the
following values are substrings of JOHNSON:

J JOHN JO ON SON …
TRANSLATE

The TRANSLATE function is used to translate a string, character by character, into another string. There are
normally three arguments with the TRANSLATE function: the string to be converted, a list of the characters to
convert, and a list of the substitution characters. Implementation examples are shown in the next part of this
hour.

Various Common Character Functions
Character functions are used mainly to compare, join, search, and extract a segment of a string or a value in
a column. There are several character functions available to the SQL programmer.

The following sections illustrate the application of ANSI concepts in some of the leading
implementations of SQL, such as in Oracle, Sybase, SQLBase, Informix, and SQL Server.

 - 98 -

Note The ANSI concepts discussed in this book are just that—concepts. Standards
provided by ANSI are simply guidelines for how the use of SQL in a relational
database should be implemented. With that thought, keep in mind that the
specific functions discussed in this hour are not necessarily the exact functions
that you may use in your particular implementation. Yes, the concepts are the
same, and the way the functions work are generally the same, but function names
and actual syntax may differ.

Concatenation
Concatenation, along with most other functions, is represented slightly differently among various
implementations. The following examples show the use of concatenation in Oracle and SQL Server.

In Oracle
SELECT 'JOHN' || 'SON' returns JOHNSON
In SQL Server
SELECT 'JOHN' + 'SON' returns JOHNSON

The syntax for Oracle is
COLUMN_NAME || ['' ||] COLUMN_NAME [COLUMN_NAME]

The syntax for SQL Server is
COLUMN_NAME + ['' +] COLUMN_NAME [COLUMN_NAME]

Example Meaning
SELECT CITY +
STATE FROM
EMPLOYEE_TBL;

This SQL Server statement concatenates the values for city and state
into one value.

SELECT CITY
||','|| STATE
FROM
EMPLOYEE_TBL;

This Oracle statement concatenates the values for city and state into
one value,placing a comma between the values for city and state.

SELECT CITY +
' ' + STATE
FROM
EMPLOYEE_TBL;

This SQL Server statement concatenates the values for city and state
into one value, placing a space between the two original values.

Example:
Input
SELECT LAST_NAME || ', ' || FIRST_NAME NAME
FROM EMPLOYEE_TBL;
Output
NAME

STEPHENS, TINA
PLEW, LINDA
GLASS, BRANDON
GLASS, JACOB
WALLACE, MARIAH
SPURGEON, TIFFANY
6 rows selected.

Note Notice the use of single quotation marks and a comma in the preceding SQL
statement. Most characters and symbols are allowed if enclosed by single
quotations marks. Some implementations may use double quotation marks for
literal string values.

 - 99 -

TRANSLATE
The TRANSLATE function searches a string of characters and checks for a specific character, makes note of
the position found, searches the replacement string at the same position, and then replaces that character
with the new value. The syntax is

TRANSLATE(CHARACTER SET, VALUE1, VALUE2)

Example Meaning
SELECT TRANSLATE
(CITY,'IND','ABC'
FROM EMPLOYEE_TBL);

This SQL statement substitutes every occurrence of I in the
string with A, replaces all occurrences of N with B, and D with
C.

The following example illustrates the use of TRANSLATE with real data:
Input
SELECT CITY, TRANSLATE(CITY,'IND','ABC')
FROM EMPLOYEE_TBL;
Output
CITY TRANSLATE(CI
------------ ------------
GREENWOOD GREEBWOOC
INDIANAPOLIS ABCAABAPOLAS
WHITELAND WHATELABC
INDIANAPOLIS ABCAABAPOLAS
INDIANAPOLIS ABCAABAPOLAS
INDIANAPOLIS ABCAABAPOLAS
6 rows selected.
Notice in this example that all occurrences of I were replaced with A, N with B, and D with C. In the city
INDIANAPOLIS, IND was replaced with ABC, but in GREENWOOD, D was replaced with C. Also notice
how the value WHITELAND was translated.
REPLACE

The REPLACE function is used to replace every occurrence of a character(s) with a specified character(s).
The use of this function is similar to the TRANSLATE function; only one specific character or string is replaced
within another string. The syntax is

REPLACE('VALUE', 'VALUE', [NULL] 'VALUE')

Example Meaning
SELECT REPLACE(FIRST_ changes any occurrence of T to a B.
FROM EMPLOYEE_TBL

This
stateme
nt
returns
all the
first
names
and
NAME,
'T', 'B')

Input
SELECT CITY, REPLACE(CITY,'I','Z')
FROM EMPLOYEE_TBL;
Output
CITY REPLACE(CITY)
------------ -------------
GREENWOOD GREENWOOD
INDIANAPOLIS ZNDZANAPOLZS

 - 100 -

WHITELAND WHZTELAND
INDIANAPOLIS ZNDZANAPOLZS
INDIANAPOLIS ZNDZANAPOLZS
INDIANAPOLIS ZNDZANAPOLZS

6 rows selected.
UPPER

Most implementations have a way to control the case of data by using functions. The UPPER function is used
to convert lowercase letters to uppercase letters for a specific string.

The syntax is as follows:
UPPER(character string)

Example Meaning
SELECT UPPER(LAST_NAME) FROM EMPLOYEE_TBL; This

SQL
stateme
nt
converts
all
characte
rs in the
column
LAST_N
AME to
upperca
se.

Input
SELECT UPPER(CITY)
FROM EMPLOYEE_TBL;
Output
UPPER(CITY)

GREENWOOD
INDIANAPOLIS
WHITELAND
INDIANAPOLIS
INDIANAPOLIS
INDIANAPOLIS

6 rows selected.
LOWER

Converse of the UPPER function, the LOWER function is used to convert uppercase letters to lowercase letters
for a specific string.

The syntax is as follows:
LOWER(character string)

Example Meaning
SELECT LOWER(LAST_NAME) FROM EMPLOYEE_TBL; LAST_NAME This

SQL
stateme
nt

 - 101 -

converts
all
characte
rs in the
column
to
lowercas
e.

Input
SELECT LOWER(CITY)
FROM EMPLOYEE_TBL;
Output
LOWER(CITY)

greenwood
indianapolis
whiteland
indianapolis
indianapolis
indianapolis

6 rows selected.
SUBSTR

Taking an expression's substring is common in most implementations of SQL, but the function name may
differ, as shown in the following Oracle and SQL Server examples.

The syntax for Oracle is
SUBSTR(COLUMN NAME, STARTING POSITION, LENGTH)

The syntax for SQL Server is
SUBSTRING(COLUMN NAME, STARTING POSITION, LENGTH)

The only difference between the two implementations is the spelling of the function name.

Example Meaning
SELECT SUBSTRING (EMP_ID,1,3) FROM EMPLOYEE_TBL This SQL statement

returns the first three
characters of EMP_ID.

SELECT SUBSTRING (EMP_ID,4,2) FROM EMPLOYEE_TBL This SQL statement
returns the fourth and
fifth characters of
EMP_ID.

SELECT SUBSTRING (EMP_ID,6,4) FROM EMPLOYEE_TBL This SQL statement
returns the sixth through
the ninth characters of
EMP_ID.

The following is an example using Microsoft SQL Server:
Input
SELECT EMP_ID, SUBSTRING(EMP_ID,1,3)
FROM EMPLOYEE_TBL;
Output
EMP_ID SUB

 - 102 -

--------- ---
311549902 311
442346889 442
213764555 213
313782439 313
220984332 220
443679012 443

6 rows affected.

The following is an example using Oracle8:
Input
SELECT EMP_ID, SUBSTR(EMP_ID,1,3)
FROM EMPLOYEE_TBL;
Output
EMP_ID SUB
--------- ---
311549902 311
442346889 442
213764555 213
313782439 313
220984332 220
443679012 443

6 rows selected.

Note Notice the difference between the feedback of the two queries. The first example
returns the feedback 6 rows affected and the second returns 6 rows
selected. You see differences such as this between implementations.

INSTR
The INSTR function is a variation of the POSITION function; it is used to search a string of characters for a
specific set of characters and report the position of those characters. The syntax is as follows:

INSTR(COLUMN NAME, 'SET',
[START POSITION [, OCCURRENCE]]);

Example Meaning
SELECT INSTR(STATE ,'I',1,1) FROM EMPLOYEE_TBL; This SQL

statement
returns the
position of
the first
occurrence
of the letter I
for each
state in
EMPLOYEE_T
BL.

Input
SELECT PROD_DESC,
 INSTR(PROD_DESC,'A',1,1)
FROM PRODUCTS_TBL;
Output

 - 103 -

PROD_DESC INSTR(PROD_DESC,'A',1,1)
------------------------- --------------------------
WITCHES COSTUME 0
PLASTIC PUMPKIN 18 INCH 3
FALSE PARAFFIN TEETH 2
LIGHTED LANTERNS 10
ASSORTED COSTUMES 1
CANDY CORN 2
PUMPKIN CANDY 10
PLASTIC SPIDERS 3
ASSORTED MASKS 1
KEY CHAIN 7
OAK BOOKSHELF 2

11 rows selected.
Notice that if the searched character A was not found in a string, the value 0 was returned for the
position.
LTRIM

The LTRIM function is another way of clipping part of a string. This function and SUBSTRING are in the same
family. LTRIM is used to trim characters from the left of a string. The syntax is

LTRIM(CHARACTER STRING [,'set'])

Example Meaning
SELECT LTRIM(FIRST_ NAME,'LES') FROM CUSTOMER_TBL FIRST_NAME
= 'LESLIE';

This
SQL
stateme
nt trims
the
characte
rs LES
from the
left of all
names
that are
WHERE
LESLIE.

Input
SELECT POSITION, LTRIM(POSITION,'SALES')
FROM EMPLOYEE_PAY_TBL;
Output
POSITION LTRIM(POSITION,
--------------- ---------------
MARKETING MARKETING
TEAM LEADER TEAM LEADER
SALES MANAGER MANAGER
SALESMAN MAN
SHIPPER HIPPER
SHIPPER HIPPER

6 rows selected.

 - 104 -

The S in SHIPPER was trimmed off, even though SHIPPER does not contain the string SALES. The first
four characters of SALES were ignored. The searched characters must appear in the same order of the
search string and must be on the far left of the string. In other words, LTRIM will trim off all characters to
the left of the last occurrence in the search string.
RTRIM

Like the LTRIM, the RTRIM function is used to trim characters from the right of a string. The syntax is
RTRIM(CHARACTER STRING [,'set'])

Example Meaning
SELECT RTRIM(FIRST_ NAME, 'ON') FROM EMPLOYEE_TBL WHERE
FIRST_NAME = 'BRANDON';

This
SQL
stateme
nt
returns
the first
name
BRANDO
N and
trims the
ON,leavi
ng
BRAND
as a
result.

Input
SELECT POSITION, RTRIM(POSITION,'ER')
FROM EMPLOYEE_PAY_TBL;
Output
POSITION RTRIM(POSITION,
--------------- ---------------
MARKETING MARKETING
TEAM LEADER TEAM LEAD
SALES MANAGER SALES MANAG
SALESMAN SALESMAN
SHIPPER SHIPP
SHIPPER SHIPP

6 rows selected.
The string ER was trimmed from the right of all applicable strings.
DECODE

The DECODE function is not ANSI—at least not at the time of this writing—but its use is shown here because
of its great power. This function is used in SQLBase, Oracle, and possibly other implementations. DECODE is
used to search a string for a value or string, and if the string is found, an alternate string is displayed as part
of the query results.

The syntax is
DECODE(COLUMN NAME, 'SEARCH1', 'RETURN1',['SEARCH2', 'RETURN2' ,'DEFAULT VALUE'])

Example Meaning
SELECT DECODE(LAST_NAME, 'SMITH', 'JONES', 'OTHER') FROM
EMPLOYEE_TBL;

This query
searches the
value of all
last names in
EMPLOYEE_T
BL; if the

 - 105 -

value SMITH
is found,
JONES is
displayed in
its place. Any
other names
are displayed
as OTHER,
which is
called the
default value.

In the following example, DECODE is used on the values for CITY in EMPLOYEE_TBL:
Input
SELECT CITY,
 DECODE(CITY,'INDIANAPOLIS','INDY',
 'GREENWOOD','GREEN', 'OTHER')
FROM EMPLOYEE_TBL;
Output
CITY DECOD
------------ -----
GREENWOOD GREEN
INDIANAPOLIS INDY
WHITELAND OTHER
INDIANAPOLIS INDY
INDIANAPOLIS INDY
INDIANAPOLIS INDY

6 rows selected.
The output shows the value INDIANAPOLIS displayed as INDY, GREENWOOD displayed as GREEN, and
all other cities displayed as OTHER.

Miscellaneous Character Functions

The following sections show a few other character functions worth mentioning. Once again, these are
functions that are fairly common among major implementations.

Finding a Value's Length
The LENGTH function is a common function used to find the length of a string, number, date, or expression in
bytes. The syntax is

LENGTH(CHARACTER STRING)

Example Meaning
SELECT LENGTH FROM EMPLOYEE_TBL; This SQL

statement
(LAST_NA
ME)
returns
the length
of the last
name for
each
employee.

Input
SELECT PROD_DESC, LENGTH(PROD_DESC)

 - 106 -

FROM PRODUCTS_TBL;
Output
PROD_DESC LENGTH(PROD_DESC)
------------------------ -----------------
WITCHES COSTUME 15
PLASTIC PUMPKIN 18 INCH 23
FALSE PARAFFIN TEETH 19
LIGHTED LANTERNS 16
ASSORTED COSTUMES 17
CANDY CORN 10
PUMPKIN CANDY 13
PLASTIC SPIDERS 15
ASSORTED MASKS 14
KEY CHAIN 9
OAK BOOKSHELF 13

11 rows selected.
NVL (NULL Value)

The NVL function is used to return data from one expression if another expression is NULL. NVL can be used
with most data types; however, the value and the substitute must be the same data type. The syntax is

NVL('VALUE', 'SUBSTITUTION')

Example Meaning
SELECT NVL(SALARY, '00000') FROM substitutes 00000
for any NULL values.

This SQL
statement finds
NULL values and
EMPLOYEE_PAY_T
BL;

Input
SELECT PAGER, NVL(PAGER,9999999999)
FROM EMPLOYEE_TBL;
Output
PAGER NVL(PAGER,
---------- ----------
 9999999999
 9999999999
3175709980 3175709980
8887345678 8887345678
 9999999999
 9999999999

6 rows selected.
Only NULL values were represented as 9999999999.
LPAD

LPAD (left pad) is used to add characters or spaces to the left of a string. The syntax is
LPAD(CHARACTER SET)

The following example pads periods to the left of each product description, totaling 30 characters
between the actual value and padded periods.

 - 107 -

Input
SELECT LPAD(PROD_DESC,30,'.') PRODUCT
FROM PRODUCTS_TBL;
Output
PRODUCT

...............WITCHES COSTUME
.......PLASTIC PUMPKIN 18 INCH
..........FALSE PARAFFIN TEETH
..............LIGHTED LANTERNS
.............ASSORTED COSTUMES
....................CANDY CORN
.................PUMPKIN CANDY
...............PLASTIC SPIDERS
................ASSORTED MASKS
.....................KEY CHAIN
........OAK BOOKSHELF

11 rows selected.
RPAD

The RPAD (right pad) is used to add characters or spaces to the right of a string. The syntax is
RPAD(CHARACTER SET)

The following example pads periods to the right of each product description, totaling 30 characters
between the actual value and padded periods.
Input
SELECT RPAD(PROD_DESC,30,'.') PRODUCT
FROM PRODUCTS_TBL;
Output
PRODUCT

WITCHES COSTUME...............
PLASTIC PUMPKIN 18 INCH.......
FALSE PARAFFIN TEETH..........
LIGHTED LANTERNS..............
ASSORTED COSTUMES.............
CANDY CORN....................
PUMPKIN CANDY.................
PLASTIC SPIDERS...............
ASSORTED MASKS................
KEY CHAIN........
OAK BOOKSHELF........

11 rows selected.

 - 108 -

ASCII
The ASCII function is used to return the ASCII (American Standard Code for Information Interchange)
representation of the leftmost character of a string. The syntax is

ASCII(CHARACTER SET)

Examples:
ASCII('A') returns 65
ASCII('B') returns 66
ASCII('C') returns 67
For more information, refer to the ASCII chart in Appendix B, "ASCII Table."

Mathematical Functions

Mathematical functions are fairly standard across implementations. These are functions that allow you to
manipulate numeric values in a database according to mathematical rules.

The most common functions include the following:

Absolute value (ABS)

Rounding (ROUND)

Square root (SQRT)

Sign values (SIGN)

Power (POWER)

Ceiling and floor values (CEIL,
FLOOR)

Exponential values (EXP)

SIN, COS, TAN

The general syntax of most mathematical functions is
FUNCTION(EXPRESSION)

Conversion Functions

 New Term Conversion functions are used to convert a data type into another data type. For example, there
may be times when you want to convert character data into numeric data. You may have data that is
normally stored in character format, but occasionally you want to convert the character format to numeric for
the purpose of making calculations. Mathematical functions and computations are not allowed on data that is
represented in character format.

The following are general types of data conversions:
 Character to numeric
 Numeric to character
 Character to date
 Date to character

The first two types of conversions are discussed in this hour. The remaining conversion types are
discussed during Hour 12, "Understanding Dates and Times," after date and time storage is discussed
in more detail.

Note Some implementations may implicitly convert data types when necessary.

Converting Character Strings to Numbers
There are two things you should notice regarding the differences between numeric data types and character
string data types:

1. Arithmetic expressions and functions can be used on numeric values.
2. Numeric values are right-justified, whereas character string data types are left-

justified in output results.

 - 109 -

When a character string is converted to a numeric value, the value takes on the two attributes just
mentioned.

Some implementations may not have functions to convert character strings to numbers, while some
have conversion functions such as this. In either case, consult your implementation documentation for
specific syntax and rules for conversions.

Note Characters in a character string being converted to a number must typically be 0
through 9. The addition symbol, minus symbol, and period can also be used to
represent positive numbers, negative numbers, and decimals. For example, the
string STEVE cannot be converted to a number, whereas an individual's Social
Security number could be stored as a character string, but could easily be
converted to a numeric value via use of a conversion function.

The following is an example of a numeric conversion using an Oracle conversion function:
Input
SELECT EMP_ID, TO_NUMBER(EMP_ID)
FROM EMPLOYEE_TBL;
Output
EMP_ID TO_NUMBER(EMP_ID)
--------- -----------------
311549902 311549902
442346889 442346889
213764555 213764555
313782439 313782439
220984332 220984332
443679012 443679012

6 rows selected.

The employee identification is right-justified following the conversion.
Tip The justification of data is the simplest way to identify a column's data type.

Converting Numbers to Strings
The conversion of numeric values to character strings is precisely the opposite of converting characters to
numbers.

The following is an example of converting a numeric value to a character string using a Transact-SQL
conversion function for Microsoft SQL Server:
Input
SELECT PAY = PAY_RATE, NEW_PAY = STR(PAY_RATE)
FROM EMPLOYEE_PAY_TBL
WHERE PAY_RATE IS NOT NULL;
Output
PAY NEW_PAY
---------- -------
 17.5 17.5
 14.75 14.75
 18.25 18.25
 12.8 12.8
 11 11
 15 15

 - 110 -

6 rows affected.

The following is the same example using an Oracle conversion function:
Input
SELECT PAY_RATE, TO_CHAR(PAY_RATE)
FROM EMPLOYEE_PAY_TBL
WHERE PAY_RATE IS NOT NULL;
Output
 PAY_RATE TO_CHAR(PAY_RATE)
---------- -----------------
 17.5 17.5
 14.75 14.75
 18.25 18.25
 12.8 12.8
 11 11
 15 15

6 rows selected.

The Concept of Combining Character Functions

Most functions can be combined in a single SQL statement. SQL would be far too limited if function
combinations were not allowed. The following examples show how some functions can be combined with
one another in a query:

Input
SELECT LAST_NAME || ', ' || FIRST_NAME NAME,
 SUBSTR(EMP_ID,1,3) || '-' ||
 SUBSTR(EMP_ID,4,2) || '-' ||
 SUBSTR(EMP_ID,6,4) ID
FROM EMPLOYEE_TBL;
Output
NAME ID
------------------ -----------
STEPHENS, TINA 311-54-9902
PLEW, LINDA 442-34-6889
GLASS, BRANDON 213-76-4555
GLASS, JACOB 313-78-2439
WALLACE, MARIAH 220-98-4332
SPURGEON, TIFFANY 443-67-9012

6 rows selected.
The following example combines two functions in the query (concatenation with substring). By pulling
the EMP_ID column apart into three pieces, you can concatenate those pieces with dashes to render a
readable Social Security number.
Input
SELECT SUM(LENGTH(LAST_NAME) + LENGTH(FIRST_NAME)) TOTAL
FROM EMPLOYEE_TBL;
Output

 - 111 -

 TOTAL

 71

1 row selected.
This example uses the LENGTH function and the arithmetic operator (+) to add the length of the first
name to the length of the last name for each column; the SUM function then finds the total length of all
first and last names.

Note When embedding functions within functions in an SQL statement, remember that
the innermost function is resolved first, and then each function is subsequently
resolved from the inside out.

Summary

You have been introduced to various functions used in an SQL statement—usually a query—to modify or
enhance the way output is represented. Those functions include character, mathematical, and conversion
functions. It is very important to realize that the ANSI standard is a guideline for how SQL should be
implemented by vendors, but does not dictate the exact syntax or necessarily place limits on vendors'
innovations. Most vendors have standard functions and conform to the ANSI concepts, but each vendor has
his or her own specific list of available functions. The function name may differ and the syntax may differ, but
the concepts with all functions are the same.

Q&A
Q. Are all the functions in the ANSI standard?
A.

No, not all functions are exactly ANSI SQL. Functions, like data types, are
often implementation-dependent. Several examples of functions from
selected implementations are included. However, because so many
implementations use similar functions (although they may slightly differ),
check your particular implementation for available functions and their usage.

Q. Is the data actually changed in the database when using functions?
A. No. Data is not changed in the database when using functions. Functions

are typically used in queries to manipulate the output's appearance.

Workshop
The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
Match the Descriptions with the possible Functions.

DESCRIPTIONS FUNCTIONS

a. Used to select a portion of a character string. ||
RPAD
LPAD

b. Used to trim characters from either the right or left of a string. LENGTH
UPPER

c. Used to change all letters to lowercase. LTRIM
RTRIM
LOWER

d. Used to find the length of a string. SUBSTR

e. Used to combine strings.

 - 112 -

1. True or false: Using functions in a select statement to restructure the appearance
of data in output will also affect the way the data is stored in the database.

2. True or false: The outermost function is always resolved first when functions are
embedded within other functions in a query.

Exercises
1. Use the appropriate function to convert the string hello to all uppercase letters.
2. Use the appropriate function to print only the first four characters of the string

JOHNSON.
3. Use the appropriate function to concatenate the strings JOHN and SON.

Hour 12: Understanding Dates and Times
Overview

In this hour, you learn about the nature of dates and time in SQL. Not only does this hour discuss the
DATETIME data type in more detail; you see how some implementations use dates, some of the common
rules, and how to extract the date and time in a desired format.

Note As you know by now, there are many different SQL implementations. This book
shows the ANSI standard and the most common non-standard functions,
commands, and operators. Oracle is used for the examples. Even in Oracle, the
date can be stored in different formats. You must check your particular
implementation for the date storage. No matter how it is stored, your
implementation should have functions that convert date formats.

How Is a Date Stored?

Each implementation has a default storage format for the date and time. This default storage often varies
among different implementations, as do other data types for each implementation. The following sections
begin by reviewing the standard format of the DATETIME data type and its elements. Then you see the data
types for date and time in some popular implementations of SQL, including Oracle, Sybase, and Microsoft
SQL Server.

Standard Data Types for Date and Time
There are three standard SQL data types for date and time (DATETIME) storage:

Data Type Usage
DATE Stores date literals
TIME Stores time literals
TIMESTAMP Stores date and time literals

Format and range of valid values for each data type:
DATE
Format: YYYY-MM-DD
Range: 0001-01-01 to 9999-12-31
TIME
Format: HH:MI:SS.nn...
Range: 00:00:00... to 23:59:61.999...
TIMESTAMP
Format: YYYY-MM-DD HH:MI:SS.nn...
Range: 0001-01-01 00:00:00... to 9999-12-31 23:59:61.999...
DATETIME Elements

DATETIME elements are those elements pertaining to date and time that are included as part of a DATETIME
definition. The following is a list of the constrained DATETIME elements and a valid range of values for each
element:

 - 113 -

YEAR 0001 to 9999
MONTH 01 to 12
DAY 01 to 31
HOUR 00 to 23
MINUTE 00 to 59
SECOND 00.000... to 61.999...

Seconds can be represented as a decimal, allowing the expression of tenths of a second, hundredths of
a second, milliseconds, and so on. Each of these elements, except for the last, is self explanatory; they
are elements of time that we deal with on a daily basis. You may question the fact that a minute can
contain more than 60 seconds. According to the ANSI standard, this 61.999 seconds is due to the
possible insertion or omission of a leap second in a minute, which in itself is a rare occurrence. Refer to
your implementation on the allowed values because date and time storage may vary widely.

Implementation Specific Data Types
As with other data types, each implementation provides its own representation and syntax. This section
shows how three products (Oracle, Sybase, and SQLBase) have been implemented with date and time.

Product Data Type Use

Oracle DATE Stores both date and time information

Sybase DATETIME
SMALLDATETIME

Stores both date and time information
Stores both date and time information, but
includes a smaller date range than DATETIME

SQLBase DATETIME
TIMESTAMP
DATE
TIME

Stores both date and time information
Stores both date and time information
Stores a date value
Stores a time value

Note Each implementation has its own specific data type(s) for date and time
information. However, most implementations comply with the ANSI standard in
the fact that all elements of the date and time are included in their associated
data types. The way the date is internally stored is implementation-dependent.

Date Functions

Date functions are available in SQL depending on the options with each specific implementation. Date
functions, similar to character string functions, are used to manipulate the representation of date and time
data. Available date functions are often used to format the output of dates and time in an appealing format,
compare date values with one another, compute intervals between dates, and so on.

The Current Date
You may have already raised the question: How do I get the current date from the database? The need to
retrieve the current date from the database may originate from several situations, but the current date is
normally returned either to compare to a stored date or to return the value of the current date as some sort of
timestamp.

 New Term The current date is ultimately stored on the host computer for the database, and is called
the system date. The database, which interfaces with the appropriate operating system, has the
capability to retrieve the system date for its own purpose or to resolve database requests, such as
queries.

Take a look at a couple of methods of attaining the system date based on commands from two different
implementations.
Sybase uses a function called GETDATE() to return the system date. This function is used in a query as
follows. The output is what would return if today's current date was New Year's Eve for 1999.
Input
SELECT GETDATE()
Output

 - 114 -

Dec 31, 1999
Note Most options discussed in this book for Sybase's and Microsoft's implementations

are applicable to both implementations, because both use SQL Server for their
database server. Both implementations also use an extension to standard SQL
known as Transact-SQL.

Oracle uses what is calls a pseudocolumn, SYSDATE, to retrieve the current date. SYSDATE acts as any
other column in a table and can be selected from any table in the database, although it is not actually
part of the table's definition.

To return the system date in Oracle, the following statement returns the output if today was New Year's
Eve before 2000:
Input
SELECT SYSDATE FROM TABLE_NAME
Output
31-DEC-99

Time Zones
The use of time zones may be a factor when dealing with date and time information. For instance, a time of
6:00 p.m. in central United States does not equate to the same time in Australia, although the actual point in
time is the same. Some of us who live within the daylight savings time zone are used to adjusting our clocks
twice a year. If time zones are considerations when maintaining data in your case, you may find it necessary
to consider time zones and perform time conversions, if available with your SQL implementation.

The following are some common time zones and their abbreviations:

Abbreviation Definition

AST, ADT Atlantic standard,
daylight time

BST, BDT Bering standard,
daylight time

CST, CDT Central standard,
daylight time

EST, EDT Eastern standard,
daylight time

GMT Greenwich mean time

HST, HDT Alaska/Hawaii
standard, daylight
time

MST, MDT Mountain standard,
daylight time

NST Newfoundland
standard, daylight
time

PST, PDT Pacific standard,
daylight time

YST, YDT Yukon standard,
daylight time

 - 115 -

Note Some implementations have functions that allow you to
deal with different time zones. However, not all
implementations may support the use of time zones. Be
sure to verify the use of time zones in your particular
implementation, as well as the need in the case of your
database.

Adding Time to Dates
Days, months, and other parts of time can be added to dates for the purpose of comparing dates to one
another, or to provide more specific conditions in the WHERE clause of a query.

Intervals can be used to add periods of time to a DATETIME value. As defined by the standard, intervals
are used to manipulate the value of a DATETIME value, as in the following examples:
Input
DATE '1999-12-31' + INTERVAL '1' DAY
Output
'2000-01-01'
Input
DATE '1999-12-31' + INTERVAL '1' MONTH
Output
'2000-01-31'
The following is an example using the SQL Server function DATEADD:
Input
SELECT DATEADD(MONTH, 1, DATE_HIRE)
FROM EMPLOYEE_PAY_TBL
Output
DATE_HIRE ADD_MONTH
---------- ----------
23-MAY-89 23-JUN-89
17-JUN-90 17-JUL-90
14-AUG-94 14-SEP-94
28-JUN-97 28-JUL-97
22-JUL-96 22-AUG-96
14-JAN-91 14-FEB-91

6 rows affected.
The following example uses the Oracle function ADD_MONTHS:
Input
SELECT DATE_HIRE, ADD_MONTHS(DATE_HIRE,1)
FROM EMPLOYEE_PAY_TBL;
Output
DATE_HIRE ADD_MONTH
----- ------
23-MAY-89 23-JUN-89
17-JUN-90 17-JUL-90
14-AUG-94 14-SEP-94
28-JUN-97 28-JUL-97
22-JUL-96 22-AUG-96
14-JAN-91 14-FEB-91

 - 116 -

6 rows selected.

To add one day to a date in Oracle, use the following:
Input
SELECT DATE_HIRE, DATE_HIRE + 1
FROM EMPLOYEE_PAY_TBL
WHERE EMP_ID = '311549902';
Output
DATE_HIRE DATE_HIRE
---------- ----------
23-MAY-89 24-MAY-89

1 row selected.

Notice that these examples in SQL Server and Oracle, though they differ syntactically from the ANSI
examples, derive their results based on the same concept as described by the SQL standard.

Comparing Dates and Time Periods
OVERLAPS is a powerful standard SQL conditional operator for DATETIME values. The OVERLAPS operator
is used to compare two timeframes and return the Boolean value TRUE or FALSE, depending on whether the
two timeframes overlap. The following comparison returns the value TRUE:

(TIME '01:00:00' , TIME '05:59:00')
OVERLAPS
(TIME '05:00:00' , TIME '07:00:00')
The following comparison returns the value FALSE:
(TIME '01:00:00' , TIME '05:59:00')
OVERLAPS
(TIME '06:00:00 , TIME '07:00:00')

Miscellaneous Date Functions
The following list shows some powerful date functions that exist in the implementations for SQL Server and
Oracle.

SQL SERVER
DATEPART Returns the integer value of a DATEPART for a date
DATENAME Returns the text value of a DATEPART for a date
GETDATE() Returns the system date
DATEDIFF Returns the difference between two dates for specified date

parts, such as days, minutes, and seconds

ORACLE

NEXT_DAY Returns the next day of the week as specified (for example,
FRIDAY) since a given date

MONTHS_BETWEEN Returns the number of months between two given dates

Date Conversions
The conversion of dates takes place for any number of reasons. Conversions are mainly used to alter the
data type of values defined as a DATETIME value or any other valid data type of a particular implementation.

Typical reasons for date conversions are as follows:

 - 117 -

 To compare date values of different data types
 To format a date value as a character string
 To convert a character string into a date format

The ANSI CAST operator is used to convert data types into other data types.

The basic syntax is as follows:
CAST (EXPRESSION AS NEW_DATA_TYPE)

Specific examples according to the syntax of some implementations are illustrated in the following
subsections, covering

 The representation of parts of a DATETIME value
 Conversions of dates to character strings
 Conversions of character strings to dates

Date Pictures
 New Term A date picture is composed of formatting elements used to extract date and time information
from the database in a desired format. Date pictures may not be available in all SQL implementations.

Without the use of a date picture and some type of conversion function, the date and time information is
retrieved from the database in a default format, such as:
1999-12-31
31-DEC-99
1999-12-31 23:59:01.11
...
What if you wanted the date displayed as the following? You have to convert the date from a DATETIME
format into a character string format:
December 31, 1997

This is accomplished by implementation-specific functions for this very purpose, further illustrated in the
following sections.
Sybase date pictures:
yy year
qq quarter
mm month
dy day of year
wk week
dw weekday
hh hour
mi minute
ss second
ms millisecond

Oracle date pictures:
AD anno

Domini
AM ante

meridian
BC Before

Christ
CC Century

 - 118 -

D Number of the day in the week
DD Number of the day in the month
DDD Number of the day in the year
DAY The day spelled out (MONDAY)
Day The day spelled out (Monday)
day The day spelled out (monday)
DY The three-letter abbreviation of day (MON)
Dy The three-letter abbreviation of day (Mon)
dy The three-letter abbreviation of day (mon)
HH Hour of the day
HH12 Hour of the day
HH24 Hour of the day for a 24-hour clock
J Julian days since 12-31-4713 b.c.
MI Minute of the hour
MM The number of the month
MON The three-letter abbreviation of the month (JAN)
Mon The three-letter abbreviation of the month (Jan)
mon The three-letter abbreviation of the month (jan)
MONTH The month spelled out (JANUARY)
Month The month spelled out (January)
month The month spelled out (january)
PM post meridian
Q The number of the quarter
RM The Roman numeral for the month
RR The two digits of the year
SS The second of a minute
SSSSS The seconds since midnight
SYYYY The signed year; if b.c. 500, b.c. = -500
W The number of the week in a month
WW The number of the week in a year
Y The last digit of the year
YY The last two digits of the year
YYY The last three digits of the year
YYYY The year
YEAR The year spelled out (NINETEEN-NINETY-NINE)
Year The year spelled out (Nineteen-Ninety-Nine)
year The year spelled out (nineteen-ninety-nine)

Converting Dates to Character Strings
DATETIME values are converted to character strings to alter the appearance of output from a query. A
conversion function is used to achieve this. Two examples, the first using SQL Server, of converting date and
time data into a character string as designated by a query follow:

Input

 - 119 -

SELECT DATE_HIRE = DATENAME(MONTH, DATE_HIRE)
FROM EMPLOYEE_PAY_TBL
Output
DATE_HIRE

May
June
August
June
July
Jan

6 rows affected.
The following is an Oracle date conversion using the TO_CHAR function:
Input
SELECT DATE_HIRE, TO_CHAR(DATE_HIRE,'Month dd, yyyy') HIRE
FROM EMPLOYEE_PAY_TBL;
Output
DATE_HIRE HIRE
------ ---------
23-MAY-89 May 23, 1989
17-JUN-90 June 17, 1990
14-AUG-94 August 14, 1994
28-JUN-97 June 28, 1997
22-JUL-96 July 22, 1996
14-JAN-91 January 14, 1991

6 rows selected.

Converting Character Strings to Dates
The following example illustrates a method from one implementation of converting a character string into a
date format. When the conversion is complete, the data can be stored in a column defined as having some
form of a DATETIME data type.

Input
SELECT TO_DATE('JANUARY 01 1998','MONTH DD YYYY')
FROM EMPLOYEE_PAY_TBL;
Output
TO_DATE('

01-JAN-99
01-JAN-99
01-JAN-99
01-JAN-99
01-JAN-99
01-JAN-99

6 rows selected.

 - 120 -

You may be wondering why six rows were selected from this query when only one date value was
provided. The reason is because the conversion of the literal string was selected from the
EMPLOYEE_PAY_TBL, which has six rows of data. Hence, the conversion of the literal string was
selected against each record in the table.

Summary

You have an understanding of DATETIME values based on the fact that ANSI has provided a standard.
However, as with many SQL elements, most implementations have deviated from the exact functions and
syntax of standard SQL commands, although the concepts always remain the same as far as the basic
representation and manipulation of date and time information. Last hour, you saw how functions varied
depending on each implementation. This hour, you have seen some of the differences between date and
time data types, functions, and operators. Keep in mind that not all examples discussed in this hour work
with your particular implementation, but the concepts of dates and times are the same and should be
applicable to any implementation.

Q&A
Q. Why do implementations choose to deviate from a single standard set of

data types and functions?
A.

Implementations differ as far as the representation of data types and
functions mainly because of the way each vendor has chosen to internally
store data and provide the most efficient means of data retrieval. However,
all implementations should provide the same means for the storage of date
and time values based on the required elements prescribed by ANSI, such
as the year, month, day, hour, minute, second, and so on.

Q. What if I want to store date and time information differently than what is
available in my implementation?

A.

Dates can be stored in nearly any type of format if you choose to define the
column for a date as a variable length character. The main thing to
remember is that when comparing date values to one another, it is usually
required to first convert the character string representation of the date to a
valid DATETIME format for your implementation; that is, if appropriate
conversion functions are available.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. From where is the system date and time normally derived?
2. List the standard internal elements of a DATETIME value.
3. What could be a major factor concerning the representation and comparison of

date and time values if your company is an international organization?
4. Can a character string date value be compared to a date value defined as a valid

DATETIME data type?

Exercises
Provide SQL code for the exercises given the following information:
Use SYSDATE to represent the current date and time.

Use the table called DATES.
Use the TO_CHAR function to convert dates to character strings with the following syntax:
TO_CHAR('EXPRESSION','DATE_PICTURE')

Use the TO_DATE function to convert character strings to dates, with the following syntax:
TO_DATE('EXPRESSION','DATE_PICTURE')

 - 121 -

Date picture information:

DATE PICTURE MEANING
MONTH Month spelled out
DAY Day spelled out
DD Day of month, number
MM Month of year, number
YY Two-digit year
YYYY Four-digit year
MI Minutes of the hour
SS Seconds of the minute

1. Assuming today is 1999-12-31, convert the current date to the format December
31 1999.

2. Convert the following string to DATE format:
'DECEMBER 31 1999'

3. Write the code to return the day of the week on which New Year's Eve of 1999
falls. Assume that the date is stored in the format 31-DEC-99, which is a valid
DATETIME data type.

Part IV: Building Sophisticated Database Queries
Chapter List

Hour 13: Joining Tables in Queries
Hour 14: Using Subqueries to Define Unknown Data
Hour 15: Combining Multiple Queries into One

Hour 13: Joining Tables in Queries
Overview

To this point, all database queries you have executed have extracted data from a single table. During this
hour, you learn how to join tables in a query so that data can be retrieved from multiple tables.

Selecting Data from Multiple Tables
Having the capability to select data from multiple tables is one of SQL's most powerful features. Without this
capability, the entire relational database concept would not be feasible. Single-table queries are sometimes
quite informative, but in the real world, the most practical queries are those whose data is acquired from
multiple tables within the database.

As you witnessed in the hour on normalization, a relational database is broken up into smaller, more
manageable tables for simplicity and the sake of overall management ease. As tables are divided into
smaller tables, the related tables are created with common columns—primary keys. These keys are
used to join related tables to one another.
 New Term A join combines two or more tables to retrieve data from multiple tables.

You might ask why you should normalize tables if, in the end, you are only going to rejoin the tables to
retrieve the data you want. You rarely select all data from all tables, so it is better to pick and choose
according to the needs of each individual query. Although performance may suffer slightly due to a
normalized database, overall coding and maintenance are much simpler.

 - 122 -

Types of Joins
While different implementations have many ways of joining tables, you concentrate on the most common
joins in this lesson. The types of joins that you learn are
EQUIJOINS
NATURAL JOINS
NON-EQUIJOINS
OUTER JOINS
SELF JOINS

Component Locations of a Join Condition
As you have learned from previous hours, the SELECT and FROM clauses are both required SQL statement
elements; the WHERE clause is a required element of an SQL statement when joining tables. The tables
being joined are listed in the FROM clause. The join is performed in the WHERE clause. Several operators can
be used to join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN, LIKE, and NOT; they can all be used to join
tables. However, the most common operator is the equal symbol.

Joins of Equality
Perhaps the most used and important of the joins is the EQUIJOIN, also referred to as an INNER JOIN. The
EQUIJOIN joins two tables with a common column in which each is usually the primary key.

The syntax for an EQUIJOIN is
SELECT TABLE1.COLUMN1, TABLE2.COLUMN2...
FROM TABLE1, TABLE2 [, TABLE3]
WHERE TABLE1.COLUMN_NAME = TABLE2.COLUMN_NAME
[AND TABLE1.COLUMN_NAME = TABLE3.COLUMN_NAME]

Note Take note of the example SQL statements. Indentation is used in the SQL
statements to improve overall readability. Indentation is not required, but is
recommended.

Look at the following example:
SELECT EMPLOYEE_TBL.EMP_ID,
 EMPLOYEE_PAY_TBL.DATE_HIRE
FROM EMPLOYEE_TBL,
 EMPLOYEE_PAY_TBL
WHERE EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;
This SQL statement returns the employee identification and the employee's date of hire. The employee
identification is selected from the EMPLOYEE_TBL (although it exists in both tables, you must specify
one table), while the hire date is selected from the EMPLOYEE_PAY_TBL. Because the employee
identification exists in both tables, both columns must be justified with the table name. By justifying the
columns with the table names, you tell the database server where to get the data.
Data in the following example is selected from tables EMPLOYEE_TBL and EMPLOYEE_PAY_TBL tables
because desired data resides in each of the two tables. An equality join is used.
Input
SELECT EMPLOYEE_TBL.EMP_ID, EMPLOYEE_TBL.LAST_NAME,
 EMPLOYEE_PAY_TBL.POSITION
FROM EMPLOYEE_TBL, EMPLOYEE_PAY_TBL
WHERE EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;
Output
EMP_ID LAST_NAM POSITION
--------- -------- -------------
311549902 STEPHENS MARKETING
442346889 PLEW TEAM LEADER
213764555 GLASS SALES MANAGER

 - 123 -

313782439 GLASS SALESMAN
220984332 WALLACE SHIPPER
443679012 SPURGEON SHIPPER

6 rows selected.
 New Term Notice that each column in the SELECT clause is preceded by the associated table name in
order to identify each column. This is called qualifying columns in a query. Qualifying columns is only
necessary for columns that exist in more than one table referenced by a query. You usually qualify all
columns for consistency and to avoid any questions when debugging or modifying SQL code.

Natural Joins
A NATURAL JOIN is nearly the same as the EQUIJOIN; however, the NATURAL JOIN differs from the
EQUIJOIN by eliminating duplicate columns in the joining columns. The JOIN condition is the same, but the
columns selected differ.

The syntax is as follows:
SELECT TABLE1.*, TABLE2.COLUMN_NAME
 [TABLE3.COLUMN_NAME]
FROM TABLE1, TABLE2 [TABLE3]
WHERE TABLE1.COLUMN_NAME = TABLE2.COLUMN_NAME
[AND TABLE1.COLUMN_NAME = TABLE3.COLUMN]

Look at the following example:
SELECT EMPLOYEE_TBL.*, EMPLOYEE_PAY_TBL.SALARY
FROM EMPLOYEE_TBL,
 EMPLOYEE_PAY_TBL
WHERE EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;
This SQL statement returns all columns from EMPLOYEE_TBL and SALARY from the
EMPLOYEE_PAY_TBL. The EMP_ID is in both tables, but is retrieved only from the EMPLOYEE_TBL
because both contain the same information and do not need to be selected.
The following example selects all columns from the EMPLOYEE_TBL table and only one column from the
EMPLOYEE_PAY_TBL table. Remember that the asterisk (*) represents all columns of a table.
Input
SELECT EMPLOYEE_TBL.*, EMPLOYEE_PAY_TBL.POSITION
FROM EMPLOYEE_TBL, EMPLOYEE_PAY_TBL
WHERE EMPLOYEE_TBL.EMP_ID = EMPLOYEE_PAY_TBL.EMP_ID;
Output
EMP_ID LAST_NAM FIRST_NA M ADDRESS CITY ST ZIP PHONE
--------- -------- -------- - ------------- ------------ -- ----- ----------
PAGER POSITION
---------- --------------
311549902 STEPHENS TINA D RR 3 BOX 17A GREENWOOD IN 47890 3178784465
 MARKETING

442346889 PLEW LINDA C 3301 BEACON INDIANAPOLIS IN 46224 3172978990
 TEAM LEADER

213764555 GLASS BRANDON S 1710 MAIN ST WHITELAND IN 47885 3178984321
3175709980 SALES MANAGER

 - 124 -

313782439 GLASS JACOB 3789 RIVER BLVD INDIANAPOLIS IN 45734 3175457676
8887345678 SALESMAN

220984332 WALLACE MARIAH 7889 KEYSTONE INDIANAPOLIS IN 46741 3173325986
 SHIPPER

443679012 SPURGEON TIFFANY 5 GEORGE COURT INDIANAPOLIS IN 46234 3175679007
 SHIPPER

6 rows selected.

Note Notice how the output has wrapped in the previous example. The wrap occurred
because the length of the line has exceeded the limit for the line.

Using Table Aliases
 New Term The use of table aliases means to rename a table in a particular SQL statement. The renaming is
a temporary change. The actual table name does not change in the database. As we will learn later in this
hour, giving the tables aliases is a necessity for the SELF JOIN. Giving tables aliases is most often used to
save keystrokes, which results in the SQL statement being shorter and easier to read. In addition, fewer
keystrokes means fewer keystroke errors. Giving tables aliases also means that the columns being selected
must be qualified with the table alias. The following are some examples of table aliases and the
corresponding columns:

SELECT E.EMP_ID, EP.SALARY, EP.DATE_HIRE, E.LAST_NAME
FROM EMPLOYEE_TBL E,
 EMPLOYEE_PAY_TBL EP
WHERE E.EMP_ID = EP.EMP_ID
AND EP.SALARY > 20000;
Analysis
The tables have been given aliases in the preceding SQL statement. The EMPLOYEE_TBL has been
renamed E. The EMPLOYEE_PAY_TBL has been renamed EP. The choice of what to rename the tables
is arbitrary. The letter E is chosen because the EMPLOYEE_TBL starts with E. Because the
EMPLOYEE_PAY_TBL also begins with the letter E, you could not use E again. Instead, the first letter (E)
and the first letter of the second word in the name (PAY) are used as the alias. The selected columns
were justified with the corresponding table alias. Note that SALARY was used in the WHERE clause and
must also be justified with the table alias.

Joins of Non-Equality
NON-EQUIJOIN joins two or more tables based on a specified column value not equaling a specified column
value in another table. The syntax for the NON-EQUIJOIN is

FROM TABLE1, TABLE2 [, TABLE3]
WHERE TABLE1.COLUMN_NAME != TABLE2.COLUMN_NAME
[AND TABLE1.COLUMN_NAME != TABLE2.COLUMN_NAME]

An example is as follows:
SELECT EMPLOYEE_TBL.EMP_ID, EMPLOYEE_PAY_TBL.DATE_HIRE
FROM EMPLOYEE_TBL,
 EMPLOYEE_PAY_TBL
WHERE EMPLOYEE_TBL.EMP_ID != EMPLOYEE_PAY_TBL.EMP_ID;
Analysis

The preceding SQL statement returns the employee identification and the date of hire for all employees
who do not have a corresponding record in both tables. The following example is a join of non-equality:

 - 125 -

Input
SELECT E.EMP_ID, E.LAST_NAME, P.POSITION
FROM EMPLOYEE_TBL E,
 EMPLOYEE_PAY_TBL P
WHERE E.EMP_ID <> P.EMP_ID;
Output
EMP_ID LAST_NAM POSITION
--------- -------- -------------
442346889 PLEW MARKETING
213764555 GLASS MARKETING
313782439 GLASS MARKETING
220984332 WALLACE MARKETING
443679012 SPURGEON MARKETING
311549902 STEPHENS TEAM LEADER
213764555 GLASS TEAM LEADER
313782439 GLASS TEAM LEADER
220984332 WALLACE TEAM LEADER
443679012 SPURGEON TEAM LEADER
311549902 STEPHENS SALES MANAGER
442346889 PLEW SALES MANAGER
313782439 GLASS SALES MANAGER
220984332 WALLACE SALES MANAGER
443679012 SPURGEON SALES MANAGER
311549902 STEPHENS SALESMAN
442346889 PLEW SALESMAN
213764555 GLASS SALESMAN
220984332 WALLACE SALESMAN
443679012 SPURGEON SALESMAN
311549902 STEPHENS SHIPPER
442346889 PLEW SHIPPER
213764555 GLASS SHIPPER
313782439 GLASS SHIPPER
443679012 SPURGEON SHIPPER
311549902 STEPHENS SHIPPER
442346889 PLEW SHIPPER
213764555 GLASS SHIPPER
313782439 GLASS SHIPPER
220984332 WALLACE SHIPPER

30 rows selected.
You may be curious why 30 rows were retrieved when only 6 rows exist in each table. For every record
in EMPLOYEE_TBL, there is a corresponding record in EMPLOYEE_PAY_TBL. Because non-equality was
tested in the join of the two tables, each row in the first table is paired with all rows from the second
table, except for its own corresponding row. This means that each of the 6 rows are paired with 5
unrelated rows in the second table; 6 rows multiplied by 5 rows equals 30 rows total.

 - 126 -

In the previous section's test for equality example, each of the six rows in the first table were paired with
only one row in the second table (each row's corresponding row); six rows multiplied by one row yields
a total of six rows.

Warning When using NON-EQUIJOINs, you may receive several rows of data that are
of no use to you. Check your results carefully.

Outer Joins
An OUTER JOIN is used to return all rows that exist in one table, even though corresponding rows do not
exist in the joined table. The (+) symbol is used to denote an OUTER JOIN in a query. The (+) is placed at
the end of the table name in the WHERE clause. The table with the (+) should be the table that does not have
matching rows. In many implementations, the OUTER JOIN is broken down into joins called LEFT OUTER
JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN. The OUTER JOIN in these implementations is
normally optional.

Note You must check your particular implementation for exact usage and syntax of the
OUTER JOIN. The (+) symbol is used by some major implementations, but is
non-standard.

The general syntax is
FROM TABLE1
{RIGHT | LEFT | FULL} [OUTER] JOIN
ON TABLE2

The Oracle syntax is
FROM TABLE1, TABLE2 [, TABLE3]
WHERE TABLE1.COLUMN_NAME[(+)] = TABLE2.COLUMN_NAME[(+)]
[AND TABLE1.COLUMN_NAME[(+)] = TABLE3.COLUMN_NAME[(+)]]

Note The OUTER JOIN can only be used on one side of a join condition; however, you
can use an OUTER JOIN on more than one column of the same table in the join
condition.

The concept of the OUTER JOIN is explained in the next two examples. In the first example, the product
description and the quantity ordered are selected; both values are extracted from two separate tables.
One important factor to keep in mind is that there may not be a corresponding record in the
ORDERS_TBL table for every product. A regular join of equality is performed:
Input
SELECT P.PROD_DESC, O.QTY
FROM PRODUCTS_TBL P,
 ORDERS_TBL O
WHERE P.PROD_ID = O.PROD_ID;
Output
PROD_DESC QTY
-------------------------------- ---
WITCHES COSTUME 1
PLASTIC PUMPKIN 18 INCH 25
PLASTIC PUMPKIN 18 INCH 2
LIGHTED LANTERNS 10
FALSE PARAFFIN TEETH 20
KEY CHAIN 1

6 rows selected.

Only 6 rows were selected, but there are 10 distinct products. You want to display all products, whether
the products have been placed on order or not.

 - 127 -

The next example accomplishes the desired output through the use of an OUTER JOIN. Oracle's syntax
is used for the OUTER JOIN.
Input
SELECT P.PROD_DESC, O.QTY
FROM PRODUCTS_TBL P,
 ORDERS_TBL O
WHERE P.PROD_ID = O.PROD_ID(+);
Output
PROD_DESC QTY
-------------------------------- ---
WITCHES COSTUME 1
ASSORTED MASKS
FALSE PARAFFIN TEETH 20
ASSORTED COSTUMES
PLASTIC PUMPKIN 18 INCH 25
PLASTIC PUMPKIN 18 INCH 2
PUMPKIN CANDY
PLASTIC SPIDERS
CANDY CORN
LIGHTED LANTERNS 10
KEY CHAIN 1
OAK BOOKSHELF

12 rows selected.
All products were returned by the query, even though they may not have had a quantity ordered. The
outer join is inclusive of all rows of data in the PRODUCTS_TBL table, whether a corresponding row
exists in the ORDERS_TBL table or not.

Self Joins
The SELF JOIN is used to join a table to itself, as if the table were two tables, temporarily renaming at least
one table in the SQL statement. The syntax is as follows:

SELECT A.COLUMN_NAME, B.COLUMN_NAME, [C.COLUMN_NAME]
FROM TABLE1 A, TABLE2 B [, TABLE3 C]
WHERE A.COLUMN_NAME = B.COLUMN_NAME
[AND A.COLUMN_NAME = C.COLUMN_NAME]

The following is an example:
SELECT A.LAST_NAME, B.LAST_NAME, A.FIRST_NAME
FROM EMPLOYEE_TBL A,
 EMPLOYEE_TBL B
WHERE A.LAST_NAME = B.LAST_NAME;
Analysis
The preceding SQL statement returns the employees' first name for all the employees with the same
last name from the EMPLOYEE_TBL. Self joins are useful when all of the data you want to retrieve
resides in one table, but you must somehow compare records in the table to other records in the table.

Another common example used to explain a self join is as follows. Suppose you have a table that stores
an employee identification number, the employee's name, and the employee identification number of
the employee's manager. You may want to produce a list of all employees and their managers' names.
The problem is that the manager name does not exist in the table, only the employee name:

 - 128 -

SELECT * FROM EMP;

ID NAME MGR_ID
---- --------- ------
1 JOHN 0
2 MARY 1
3 STEVE 1
4 JACK 2
5 SUE 2
In the following example, we have included the table EMP twice in the FROM clause of the query, giving
the table two aliases for the purpose of the query. By providing two aliases, it is as if you are selecting
from two distinct tables. All managers are also employees, so the join condition between the two tables
compares the value of the employee identification number from the first table with the manager
identification number in the second table. The first table acts as a table that stores employee
information, whereas the second table acts as a table that stores manager information:
SELECT E1.NAME, E2.NAME
FROM EMP E1, EMP E2
WHERE E1.MGR_ID = E2.ID;

NAME NAME
--------- ---------
MARY JOHN
STEVE JOHN
JACK MARY
SUE MARY

Joining on Multiple Keys
Most join operations that occur involve the merging of data based on a key in one table and a key in another
table. Depending on how your database has been designed, you may have to join on more than one key
field to accurately depict that data in your database. You may have a table that has a primary key that is
comprised of more than one column. You may also have a foreign key in a table that consists of more than
one column, which references the multiple column primary key.

Consider the following tables that are used here for examples only:
SQL> desc prod
 Name Null? Type
 --- -------- ----------------------------
 SERIAL_NUMBER NOT NULL NUMBER(10)
 VENDOR_NUMBER NOT NULL NUMBER(10)
 PRODUCT_NAME NOT NULL VARCHAR2(30)
 COST NOT NULL NUMBER(8,2)

SQL> desc ord
 Name Null? Type
 --- -------- ----------------------------
 ORD_NO NOT NULL NUMBER(10)
 PROD_NUMBER NOT NULL NUMBER(10)
 VENDOR_NUMBER NOT NULL NUMBER(10)

 - 129 -

 QUANTITY NOT NULL NUMBER(5)
 ORD_DATE NOT NULL DATE
The primary key in PROD is the combination of the columns SERIAL_NUMBER and VENDOR_NUMBER.
Perhaps two products can have the same serial number within the distribution company, but each serial
number is unique per vendor.
The foreign key in ORD is also the combination of the columns SERIAL_NUMBER and VENDOR_NUMBER.
When selecting data from both tables (PROD and ORD), the join operation may appear as follows:
SELECT P.PRODUCT_NAME, O.ORD_DATE, O.QUANTITY
FROM PROD P, ORD O
WHERE P.SERIAL_NUMBER = O.SERIAL_NUMBER
 AND P.VENDOR_NUMBER = O.VENDOR_NUMBER;

Join Considerations

Several things should be considered before using joins. Some considerations include what columns(s) to join
on, if there is no common column to join on, and performance issues. Performance issues are discussed in
Hour 18, "Managing Database Users."

Using a BASE TABLE
What to join on? Should you have the need to retrieve data from two tables that do not have a common
column to join, you must use another table that has a common column or columns to both tables to join on.
That table becomes the BASE TABLE. A BASE TABLE is used to join one or more tables that have common
columns, or to join tables that do not have common columns. Use the following three tables for an example
of a base table:

CUSTOMER_TBL
CUST_ID VARCHAR2(10) NOT

NUL
L

PRIMARY KEY

CUST_NAME VARCHAR2(30) NOT NULL
CUST_ADDRESS VARCHAR2(20) NOT NULL
CUST_CITY VARCHAR2(15) NOT NULL
CUST_STATE CHAR(2) NOT NULL
CUST_ZIP NUMBER(5) NOT NULL
CUST_PHONE NUMBER(10)
CUST_FAX NUMBER(10)
ORDERS_TBL
ORD_NUM VARCHAR2(10) NOT

NUL
L

PRIMARY KEY

CUST_ID VARCHAR2(10) NOT
NUL
L

PROD_ID VARCHAR2(10) NOT
NUL
L

QTY NUMBER(6) NOT
NUL
L

ORD_DATE DATE
PRODUCTS_TBL
PROD_ID VARCHAR2(10) NOT

NUL
L

PRIMARY
KEY

PROD_DESC VARCHAR2(40) NOT
NUL
L

 - 130 -

COST NUMVER(6,2) NOT
NUL
L

You have a need to use the CUSTOMERS_TBL and the PRODUCTS_TBL. There is no common column in
which to join the tables. Now look at the ORDERS_TBL. The ORDERS_TBL has CUST_ID to join with the
CUSTOMERS_TBL, which also has CUST_ID. The PRODUCTS_TBL has PROD_ID, which is also in the
ORDERS_TBL. The JOIN conditions and results look like the following:
Input
SELECT C.CUST_NAME, P.PROD_DESC
FROM CUSTOMER_TBL C,
 PRODUCTS_TBL P,
 ORDERS_TBL O
WHERE C.CUST_ID = O.CUST_ID
 AND P.PROD_ID = O.PROD_ID;
Output
CUST_NAME PROD_DESC
------------------------------ -----------------------
LESLIE GLEASON WITCHES COSTUME
SCHYLERS NOVELTIES PLASTIC PUMPKIN 18 INCH
WENDY WOLF PLASTIC PUMPKIN 18 INCH
GAVINS PLACE LIGHTED LANTERNS
SCOTTYS MARKET FALSE PARAFFIN TEETH
ANDYS CANDIES KEY CHAIN

6 rows selected.

Note Note the use of table aliases and their use on the columns in the WHERE clause.

The Cartesian Product
 New Term The Cartesian Product is a result of a CARTESIAN JOIN or "no join." If you select from two or
more tables and do not JOIN the tables, your output is all possible rows from all the tables selected from. If
your tables were large, the result could be hundreds of thousands, or even millions, of rows of data. A WHERE
clause is highly recommended for SQL statements retrieving data from two or more tables. The Cartesian
Product is also known as a cross join.

The syntax is
FROM TABLE1, TABLE2 [, TABLE3]
WHERE TABLE1, TABLE2 [, TABLE3]

The following is an example of a cross join, or the dreaded Cartesian Product:
Input
SELECT E.EMP_ID, E.LAST_NAME, P.POSITION
FROM EMPLOYEE_TBL E,
 EMPLOYEE_PAY_TBL P;
Output
EMP_ID LAST_NAM POSITION
--------- -------- --------------
311549902 STEPHENS MARKETING
442346889 PLEW MARKETING
213764555 GLASS MARKETING

 - 131 -

313782439 GLASS MARKETING
220984332 WALLACE MARKETING
443679012 SPURGEON MARKETING
311549902 STEPHENS TEAM LEADER
442346889 PLEW TEAM LEADER
213764555 GLASS TEAM LEADER
313782439 GLASS TEAM LEADER
220984332 WALLACE TEAM LEADER
443679012 SPURGEON TEAM LEADER
311549902 STEPHENS SALES MANAGER
442346889 PLEW SALES MANAGER
213764555 GLASS SALES MANAGER
313782439 GLASS SALES MANAGER
220984332 WALLACE SALES MANAGER
443679012 SPURGEON SALES MANAGER
311549902 STEPHENS SALESMAN
442346889 PLEW SALESMAN
213764555 GLASS SALESMAN
313782439 GLASS SALESMAN
220984332 WALLACE SALESMAN
443679012 SPURGEON SALESMAN
311549902 STEPHENS SHIPPER
442346889 PLEW SHIPPER
213764555 GLASS SHIPPER
313782439 GLASS SHIPPER
220984332 WALLACE SHIPPER
443679012 SPURGEON SHIPPER
311549902 STEPHENS SHIPPER
442346889 PLEW SHIPPER
213764555 GLASS SHIPPER
313782439 GLASS SHIPPER
220984332 WALLACE SHIPPER
443679012 SPURGEON SHIPPER

36 rows selected.
Data is being selected from two separate tables, yet no JOIN operation is performed. Because you
have not specified how to join rows in the first table with rows in the second table, the database server
pairs every row in the first table with every row in the second table. Because each table has 6 rows of
data each, the product of 36 rows selected is achieved from 6 rows multiplied by 6 rows.

To fully understand exactly how the Cartesian Product is derived, study the following example.
Input
SQL> SELECT X FROM TABLE1;
Output
X
-
A

 - 132 -

B
C
D

4 rows selected.
Input
SQL> SELECT V FROM TABLE2;
Output
X
-
A
B
C
D

4 rows selected.
Input
SQL> SELECT TABLE1.X, TABLE2.X
 2* FROM TABLE1, TABLE2;
Output
X X
- -
A A
B A
C A
D A
A B
B B
C B
D B
A C
B C
C C
D C
A D
B D
C D
D D

16 rows selected.

Warning Be careful to always join all tables in a query. If two tables in a query have not
been joined and each table contains 1,000 rows of data, the Cartesian
Product consists of 1,000 rows multiplied by 1,000 rows, which results in a
total of 1,000,000 rows of data returned.

Summary

You have been introduced to one of the most robust features of SQL—the table join. Imagine the limits if you
were not able to extract data from more than one table in a single query. You were shown several types of

 - 133 -

joins, each serving its own purpose depending on conditions placed on the query. Joins are used to link data
from tables based on equality and non-equality. OUTER JOINs are very powerful, allowing data retrieved
from one table, even though associated data is not found in a joined table. SELF JOINs are used to join a
table to itself. Beware of the cross join, more commonly known as the Cartesian Product. The Cartesian
Product is the result set of a multiple table query without a join, often yielding a large amount of unwanted
output. When selecting data from more than one table, be sure to properly join the tables according to the
related columns (normally primary keys). Failure to properly join tables could result in incomplete or
inaccurate output.

Q&A
Q. When joining tables, must they be joined in the same order that they appear

in the FROM clause?
A.

No, they do not have to appear in the same order; however, performance
benefits may be experienced depending on the order of tables in the FROM
clause and the order that tables are joined.

Q. When using a BASE TABLE to join unrelated tables, must I select any
columns from the base table?

A. No, the use of a BASE TABLE to join unrelated tables does not mandate
columns for selection from the base table.

Q. Can I join on more than one column between tables?
A.

Yes, some queries may require you to join on more than one column per
table to provide a complete relationship between rows of data in the joined
tables.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. What type of join would you use to return records from one table, regardless of

the existence of associated records in the related table?
2. The join conditions are located in what part of the SQL statement?
3. What type of join do you use to evaluate equality among rows of related tables?
4. What happens if you select from two different tables but fail to join the tables?
5. Use the following tables:

ORDERS_TBL
ORD_NUM VARCHAR2(10) NOT

NUL
L

PRIMARY KEY

CUST_ID VARCHAR2(10) NOT
NUL
L

PROD_ID VARCHAR2(10) NOT
NUL
L

QTY NUMBER(6) NOT
NUL
L

ORD_DATE DATE
PRODUCTS_TBL
PROD_ID VARCHAR2(10) NOT

NUL
L

PRIMARY KEY

PROD_DESC VARCHAR2(40) NOT

 - 134 -

NUL
L

COST NUMBER(6,2) NOT
NUL
L

Is the following syntax correct for using an OUTER JOIN?
SELECT C.CUST_ID, C.CUST_NAME, O.ORD_NUM
FROM CUSTOMER_TBL C, ORDERS_TBL O
WHERE C.CUST_ID(+) = O.CUST_ID(+)

Exercises
Perform the exercises using the following tables:

EMPLOYEE_TBL
EMP_ID VARCHAR2(9) NOT

NUL
L

PRIMARY KEY

LAST_NAME VARCHAR2(15) NOT
NUL
L

FIRST_NAME VARCHAR2(15) NOT
NUL
L

MIDDLE_NAME VARCHAR2(15)
ADDRESS VARCHAR2(30) NOT

NUL
L

CITY VARCHAR2(15) NOT
NUL
L

STATE CHAR(2) NOT
NUL
L

ZIP NUMBER(5) NOT
NUL
L

PHONE CHAR(10)
PAGER CHAR(10)
EMPLOYEE_PAY_TBL
EMP_ID VARCHAR2(9) NOT

NUL
L

PRIMARY KEY

POSITION VARCHAR2(15) NOT
NUL
L

DATE_HIRE DATE
PAY_RATE NUMBER(4,2) NOT

NUL
L

DATE_LAST-RAISE DATE
SALARY NUMBER(6,2)
BONUS NUMBER(4,2)

CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID) REFERENCED
 EMPLOYEE_TBL (EMP_ID)

 - 135 -

CUSTOMER_TBL
CUST_ID VARCHAR2(10) NOT

NUL
L

PRIMARY KEY

CUST_NAME VARCHAR2(30) NOT
NUL
L

CUST_ADDRESS VARCHAR2(20) NOT
NUL
L

CUST_CITY VARCHAR2(15) NOT
NUL
L

CUST_STATE CHAR(2) NOT
NUL
L

CUST_ZIP NUMBER(5) NOT
NUL
L

CUST_PHONE NUMBER(10)
CUST_FAX NUMBER(10)

ORDERS_TBL
ORD_NUM VARCHAR2(10) NOT

NUL
L

PRIMARY
KEY

CUST_ID VARCHAR2(10) NOT
NUL
L

PROD_ID VARCHAR2(10) NOT
NUL
L

QTY NUMBER(6) NOT
NUL
L

ORD_DATE DATE
PRODUCTS_TBL
PROD_ID VARCHAR2(10) NOT

NUL
L

PRIMARY
KEY

PROD_DESC VARCHAR2(40) NOT
NUL
L

COST NUMBER(6,2) NOT
NUL
L

1. Write a SQL statement to return the EMP_ID, LAST_NAME, and FIRST_NAME
from the EMPLOYEE_TBL and SALARY and BONUS from the EMPLOYEE_PAY_TBL.

2. Select from the CUSTOMERS_TBL the columns: CUST_ID, CUST_NAME. Select
from the PRODUCTS_TBL the columns: PROD_ID, COST. Select from the
ORDERS_TBL the ORD_NUM and QTY columns. Join all three of the tables into one
SQL statement.

Hour 14: Using Subqueries to Define Unknown Data

 - 136 -

Overview
During this hour, you are presented with the concept of using subqueries to return results from a database
query more effectively.

What Is a Subquery?
 New Term A subquery is a query embedded within the WHERE clause of another query to further restrict
data returned by the query. A subquery is a query within another query, also known as a nested query. A
subquery is used to return data that will be used in the main query as a condition to further restrict the data to
be retrieved. Subqueries are used with the SELECT, INSERT, UPDATE, and DELETE statements.

A subquery can be used in some cases in place of a join operation by indirectly linking data between the
tables based on one or more conditions. When a subquery is used in a query, the subquery is resolved
first, and then the main query is resolved according to the condition(s) as resolved by the subquery. The
results of the subquery are used to process expressions in the WHERE clause of the main query. The
subquery can either be used in the WHERE clause or the HAVING clause of the main query. Logical and
relational operators, such as =, >, <, <>, IN, NOT IN, AND, OR, and so on, can be used within the
subquery as well to evaluate a subquery in the WHERE or HAVING clause.

Note The same rules that apply to standard queries also apply to subqueries. Join
operations, functions, conversions, and other options can be used within a
subquery.

There are a few rules that subqueries must follow:
 Subqueries must be enclosed within parentheses.
 A subquery can have only one column in the SELECT clause, unless multiple columns

are in the main query for the subquery to compare its selected columns.
 An ORDER BY cannot be used in a subquery, although the main query can use an

ORDER BY. The GROUP BY can be used to perform the same function as the ORDER
BY in a subquery.

 Subqueries that return more than one row can only be used with multiple value
operators, such as the IN operator.

 The SELECT list cannot include any references to values that evaluate to a BLOB,
ARRAY, CLOB, or NCLOB.

 A subquery cannot be immediately enclosed in a set function.
 The BETWEEN operator cannot be used with a subquery; however, the BETWEEN can

be used within the subquery.

The basic syntax for a subquery is as follows:
SELECT COLUMN_NAME
FROM TABLE
WHERE COLUMN_NAME = (SELECT COLUMN_NAME
 FROM TABLE
 WHERE CONDITIONS);

Note Notice the use of indentation in our examples. The use of indentation is merely for
readability. We have found that when looking for errors in SQL statements, the
neater your statements are, the easier it is to read and find any errors in syntax.

The following examples show how the BETWEEN operator can and cannot be used with a subquery:
The following is an example of a correct use of BETWEEN in the subquery:
SELECT COLUMN_NAME
FROM TABLE
WHERE COLUMN_NAME OPERATOR (SELECT COLUMN_NAME
 FROM TABLE)
 WHERE VALUE BETWEEN VALUE)
The following is an example of an illegal use of BETWEEN with a subquery:
SELECT COLUMN_NAME
FROM TABLE

 - 137 -

WHERE COLUMN_NAME BETWEEN VALUE AND (SELECT COLUMN_NAME
 FROM TABLE)
Subqueries with the SELECT Statement

Subqueries are most frequently used with the SELECT statement, although they can be used within a data
manipulation statement as well. The subquery, when used with the SELECT statement, retrieves data for the
main query to use to solve the main query.

The basic syntax is as follows:
SELECT COLUMN_NAME [, COLUMN_NAME]
FROM TABLE1 [, TABLE2]
WHERE COLUMN_NAME OPERATOR
 (SELECT COLUMN_NAME [, COLUMN_NAME]
 FROM TABLE1 [, TABLE2]
 [WHERE])

The following is an example:
SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.PAY_RATE
FROM EMPLOYEE_TBL E, EMPLOYEE_PAY_TBL EP
WHERE E.EMP_ID = EP.EMP_ID
AND EP.PAY_RATE > (SELECT PAY_RATE
 FROM EMPLOYEE_PAY_TBL
 WHERE EMP_ID = '313782439')
Analysis
The preceding SQL statement returns the employee identification, last name, first name, and pay rate
for all employees who have a pay rate greater than that of the employee with the identification
313782439. In this case, you do not necessarily know (or care) what the exact pay rate is for this
particular employee; you only care about the pay rate for the purpose of getting a list of employees who
bring home more than the employee specified in the subquery.

The next query selects the pay rate for a particular employee. This query is used as the subquery in the
following example.
Input
SELECT PAY_RATE
FROM EMPLOYEE_PAY_TBL
WHERE EMP_ID = '220984332';
Output
 PAY_RATE

 11

1 row selected.
The previous query is used as a subquery in the WHERE clause of the following query.
Input
SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.PAY_RATE
FROM EMPLOYEE_TBL E, EMPLOYEE_PAY_TBL EP
WHERE E.EMP_ID = EP.EMP_ID
 AND EP.PAY_RATE > (SELECT PAY_RATE
 FROM EMPLOYEE_PAY_TBL
 WHERE EMP_ID = '220984332');
Output
EMP_ID LAST_NAM FIRST_NA PAY_RATE

 - 138 -

--------- -------- ---------- --------
442346889 PLEW LINDA 14.75
443679012 SPURGEON TIFFANY 15

2 rows selected.
The result of the subquery is 11 (shown in the last example), so the last condition of the WHERE clause
is evaluated as
AND EP.PAY_RATE > 11

You did not know the value of the pay rate for the given individual when you executed the query.
However, the main query was able to compare each individual's pay rate to the subquery results.

Note Subqueries are frequently used to place conditions on a query when the exact
conditions are unknown. The salary for 220984332 was unknown, but the
subquery was designed to do the footwork for you.

Subqueries with the INSERT Statement
Subqueries also can be used in conjunction with data manipulation language (DML) statements. The
INSERT statement is the first instance you examine. The INSERT statement uses the data returned from the
subquery to insert into another table. The selected data in the subquery can be modified with any of the
character, date, or number functions.

The basic syntax is as follows:
INSERT INTO TABLE_NAME [(COLUMN1 [, COLUMN2])]
SELECT [*|COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE VALUE OPERATOR]
The following is an example of the INSERT statement with a subquery:
Input
INSERT INTO RICH_EMPLOYEES
SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME, EP.PAY_RATE
FROM EMPLOYEE_TBL E, EMPLOYEE_PAY_TBL EP
WHERE E.EMP_ID = EP.EMP_ID
 AND EP.PAY_RATE > (SELECT PAY_RATE
 FROM EMPLOYEE_PAY_TBL
 WHERE EMP_ID = '220984332');
Output
2 rows created.
This INSERT statement inserts the EMP_ID, LAST_NAME, FIRST_NAME, and PAY_RATE into a table
called RICH_EMPLOYEES for all records of employees who have a pay rate greater than the pay rate of
the employee with identification 220984332.

Note Remember to use the COMMIT and ROLLBACK commands when using DML
commands such as the INSERT statement.

Subqueries with the UPDATE Statement
The subquery can be used in conjunction with the UPDATE statement. Either single or multiple columns in a
table can be updated when using a subquery with the UPDATE statement.

The basic syntax is as follows:
UPDATE TABLE
SET COLUMN_NAME [, COLUMN_NAME)] =
 (SELECT]COLUMN_NAME [, COLUMN_NAME)]
 FROM TABLE
 [WHERE]

 - 139 -

Examples showing the use of the UPDATE statement with a subquery follow. The first query returns the
employee identification of all employees that reside in Indianapolis. You can see that there are four
individuals who meet this criteria.
Input
SELECT EMP_ID
FROM EMPLOYEE_TBL
WHERE CITY = 'INDIANAPOLIS';
Output
EMP_ID

442346889
313782439
220984332
443679012

4 rows selected.
The first query is used as the subquery in the following UPDATE statement. The first query proves how
many employee identifications are returned by the subquery. The following is the UPDATE with the
subquery:
Input
UPDATE EMPLOYEE_PAY_TBL
SET PAY_RATE = PAY_RATE * 1.1
WHERE EMP_ID IN (SELECT EMP_ID
 FROM EMPLOYEE_TBL
 WHERE CITY = 'INDIANAPOLIS');
Output
4 rows updated.
As expected, four rows are updated. One very important thing to notice is that, unlike the example in the
first section, this subquery returns multiple rows of data. Because you expect multiple rows to be
returned, you have used the IN operator instead of the equal sign. Remember that IN is used to
compare an expression to values in a list. If the equal sign was used, an error would have been
returned.

Warning Be sure to use the correct operator when evaluating a subquery. For
example, an operator used to compare an expression to one value, such as
the equal sign, cannot be used to evaluate a subquery that returns more than
one row of data.

Subqueries with the DELETE Statement
The subquery also can be used in conjunction with the DELETE statement.

The basic syntax is as follows:
DELETE FROM TABLE_NAME
[WHERE OPERATOR [VALUE]
 (SELECT COLUMN_NAME
 FROM TABLE_NAME)
 [WHERE)]
In this example, you delete BRANDON GLASS's record from the EMPLOYEE_PAY_TBL table. You do not
know Brandon's employee identification number, but you can use a subquery to get his identification
from the EMPLOYEE_TBL table, which contains the FIRST_NAME and LAST_NAME columns.
Input
DELETE FROM EMPLOYEE_PAY_TBL
WHERE EMP_ID = (SELECT EMP_ID
 FROM EMPLOYEE_TBL

 - 140 -

 WHERE LAST_NAME = 'GLASS'
 AND FIRST_NAME = 'BRANDON');
Output
1 row deleted.

Warning Do not forget the use of the WHERE clause with the UPDATE and DELETE
statements. All rows are updated or deleted from the target table if the WHERE
clause is not used. See Hour 5, "Manipulating Data."

Embedding a Subquery Within a Subquery

A subquery can be embedded within another subquery, just as you can embed the subquery within a regular
query. When a subquery is used, that subquery is resolved before the main query. Likewise, the lowest level
subquery is resolved first in embedded or nested subqueries, working out to the main query.

Note You must check your particular implementation for limits on the number of
subqueries, if any, that can be used in a single statement. It may differ between
vendors.

The basic syntax for embedded subqueries is as follows:
SELECT COLUMN_NAME [, COLUMN_NAME]
FROM TABLE1 [, TABLE2]
WHERE COLUMN_NAME OPERATOR (SELECT COLUMN_NAME
 FROM TABLE
 WHERE COLUMN_NAME OPERATOR
 (SELECT COLUMN_NAME
 FROM TABLE
 [WHERE COLUMN_NAME OPERATOR VALUE]))

The following example uses two subqueries, one embedded within the other. You want to find out what
customers have placed orders where the quantity multiplied by the cost of a single order is greater than
the sum of the cost of all products.
Input
SELECT CUST_ID, CUST_NAME
FROM CUSTOMER_TBL
WHERE CUST_ID IN (SELECT O.CUST_ID)
 FROM, ORDERS_TBL O, PRODUCTS_TBL P
 WHERE O PROD_ID = P.PROD_ID
 AND O.QTY + P.COST < (SELECT SUM(COST)
 FROM PRODUCTS_TBL));
Output
CUST_ID CUST_NAME
---------- ------------------
090 WENDY WOLF
232 LESLIE GLEASON
287 GAVINS PLACE
43 SCHYLERS NOVELTIES
432 SCOTTYS MARKET
560 ANDYS CANDIES

6 rows selected.

Six rows that met the criteria of both subqueries were selected.

 - 141 -

The following two examples show the results of each of the subqueries to aid your understanding of
how the main query was resolved.
Input
SELECT SUM(COST) FROM PRODUCTS_TBL;
Output
 SUM(COST)

 138.08

1 row selected.
Input
SELECT O.CUST_ID
FROM ORDERS_TBL O, PRODUCTS_TBL P
WHERE O.PROD_ID = P.PROD_ID
 AND O.QTY * P.COST > 72.14;
Output
CUST_ID

43
287

2 rows selected.

In essence, the main query (after the resolution of the subqueries) is evaluated, as shown in the
following example, the substitution of the second subquery:
Input
SELECT CUST_ID, CUST_NAME
FROM CUSTOMER_TBL
WHERE CUST_ID IN (SELECT O.CUST_ID
 FROM ORDERS_TBL O, PRODUCTS_TBL P
 WHERE O.PROD_ID = P.PROD_ID
 AND O.QTY * P.COST > 72.14);

The following shows the substitution of the first subquery:
Input
SELECT CUST_ID, CUST_NAME
FROM CUSTOMER_TBL
WHERE CUST_ID IN ('287','43');

The following is the final result:
Output
CUST_ID CUST_NAME
---------- ------------------

43 SCHYLERS NOVELTIES
287 GAVINS PLACE

2 rows selected.

Warning The use of multiple subqueries results in slower response time and may
result in reduced accuracy of the results due to possible mistakes in the

 - 142 -

statement coding.

Correlated Subqueries
 New Term Correlated subqueries are common in many SQL implementations. The concept of correlated
subqueries is discussed as an ANSI standard SQL topic and is covered briefly in this hour. A correlated
subquery is a subquery that is dependent upon information in the main query.

In the following example, the table join between CUSTOMER_TBL and ORDERS_TBL in the subquery is
dependent on the alias for CUSTOMER_TBL (C) in the main query. This query returns the name of all
customers that have ordered more than 10 units of one or more items.
Input
SELECT C.CUST_NAME
FROM CUSTOMER_TBL C
WHERE 10 < (SELECT SUM(O.QTY)
 FROM ORDERS_TBL O
 WHERE O.CUST_ID = C.CUST_ID);
Output
CUST_NAME

SCOTTYS MARKET
SCHYLERS NOVELTIES
MARYS GIFT SHOP

Note In the case of a correlated subquery, the reference to the table in the main query
must be accomplished before the subquery can be resolved.

The subquery is slightly modified in the next statement to show you the total quantity of units ordered for
each customer, allowing the previous results to be verified.
Input
SELECT C.CUST_NAME, SUM(O.QTY)
FROM CUSTOMER_TBL C,
 ORDERS_TBL O
WHERE C.CUST_ID = O.CUST_ID
GROUP BY C.CUST_NAME;
Output
CUST_NAME SUM(O.QTY)
------------------------------ ----------
ANDYS CANDIES 1
GAVINS PLACE 10
LESLIE GLEASON 1
MARYS GIFT SHOP 100
SCHYLERS NOVELTIES 25
SCOTTYS MARKET 20
WENDY WOLF 2

7 rows selected.
The GROUP BY clause in this example is required because another column is being selected with the
aggregate function SUM. This gives you a sum for each customer. In the original subquery, a GROUP BY
clause is not required because SUM is used to achieve a total for the entire query, which is run against
the record for each individual customer.

 - 143 -

Summary
By simple definition and general concept, a subquery is a query that is performed within another query to
place further conditions on a query. A subquery can be used in an SQL statement's WHERE clause or
HAVING clause. Queries are typically used within other queries (Data Query Language), but can also be
used in the resolution of Data Manipulation Language statements such as INSERT, UPDATE, and DELETE.
All basic rules for DML apply when using subqueries with DML commands.

The subquery's syntax is virtually the same as that of a standalone query, with a few minor restrictions.
One of these restrictions is that the ORDER BY clause cannot be used within a subquery; a GROUP BY
clause can be used, however, which renders virtually the same effect. Subqueries are used to place
conditions that are not necessarily known for a query, providing more power and flexibility with SQL.

Q&A
Q. In the examples of subqueries, I noticed quite a bit of indentation. Is this

necessary in the syntax of a subquery?
A. Absolutely not. The indentation is used merely to break the statement into

separate parts, making the statement more readable and easier to follow.
Q. Is there a limit on the number of embedded subqueries that can be used in a

single query?
A.

Limitations such as the number of embedded subqueries allowed and the
number of tables joined in a query are specific to each implementation.
Some implementations may not have limits, although the use of too many
embedded subqueries could drastically hinder SQL statement performance.
Most limitations are affected by the actual hardware, CPU speed, and
system memory available, although there are many other considerations.

Q.

It seems that debugging a query with subqueries can prove to be very
confusing, especially with embedded subqueries. What is the best way to
debug a query with subqueries?

A.

The best way to debug a query with subqueries is to evaluate the query in
sections. First, evaluate the lowest-level subquery, and then work your way
to the main query (the same way the database evaluates the query). When
you evaluate each subquery individually, you can substitute the returned
values for each subquery to check your main query's logic. An error with a
subquery is often the use of the operator used to evaluate the subquery,
such as (=), IN, >, <, and so on.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. What is the function of a subquery when used with a SELECT statement?
2. Can you update more than one column when using the UPDATE statement in

conjunction with a subquery?
3. Are the following syntaxes correct? If not, what is the correct syntax?

a. SELECT CUST_ID, CUST_NAME
b. FROM CUSTOMER_TBL
c. WHERE CUST_ID =
d. (SELECT CUST_ID
e. FROM ORDERS_TBL
f. WHERE ORD_NUM = '16C17');
g. SELECT EMP_ID, SALARY
h. FROM EMPLOYEE_PAY_TBL
i. WHERE SALARY BETWEEN '20000'
j. AND (SELECT SALARY

 - 144 -

k. FROM EMPLOYEE_ID
l. WHERE SALARY = '40000');
m. UPDATE PRODUCTS_TBL
n. SET COST = 1.15
o. WHERE CUST_ID =
p. (SELECT CUST_ID
q. FROM ORDERS_TBL
r. WHERE ORD_NUM = '32A132');

4. What would happen if the following statement were run?
DELETE FROM EMPLOYEE_TBL
WHERE EMP_ID IN
 (SELECT EMP_ID
 FROM EMPLOYEE_PAY_TBL);

Exercises
Use the following tables to complete the exercises:

EMPLOYEE_TBL
EMP_ID VARCHAR2(9) NOT

NUL
L

PRIMARY KEY

LAST_NAME VARCHAR2(15) NOT
NUL
L

FIRST_NAME VARCHAR2(15) NOT
NUL
L

MIDDLE_NAME VARCHAR2(15)
ADDRESS VARCHAR2(30) NOT

NUL
L

CITY VARCHAR2(15) NOT
NUL
L

STATE CHAR(2) NOT
NUL
L

ZIP NUMBER(5) NOT
NUL
L

PHONE CHAR(10)
PAGER CHAR(10)

EMPLOYEE_PAY_TBL
EMP_ID VARCHAR2(9) NOT

NUL
L

PRIMARY
KEY

POSITION VARCHAR2(15) NOT
NUL
L

DATE_HIRE DATE
PAY_RATE NYMBER(4,2) NOT

NUL
L

 - 145 -

DATE_LAST_RAISE DATE

CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID_ REFERENCES
 EMPLOYEE_TBL (EMP_ID)
CUSTOMER_TBL
CUST_ID VARCHAR2(10) NOT

NULL PRIMARY KEY

CUST_NAME VARCHAR2(30) NOT
NULL

CUST_ADDRESS VARCHAR2(20) NOT
NULL

CUST_CITY VARCHAR2(15) NOT
NULL

CUST_STATE CHAR(2) NOT
NULL

CUST_ZIP NUMBER(5) NOT
NUL
L

CUST_PHONE NUMBER(10)
CUST_FAX NUMBER(10)
ORDERS_TBL
ORD_NUM VARCHAR2(10) NOT

NUL
L

PRIMARY KEY

CUST_ID VARCHAR2(10) NOT
NUL
L

PROD_ID VARCHAR2(10) NOT
NUL
L

QTY NUMBER(6) NOT
NUL
L

ORD_DATE DATE
PRODUCTS_TBL
PROD_ID VARCHAR2(10) NOT NULL PRIMARY

KEY
PROD_DESC VARCHAR2(40) NOT NULL
COST NUMBER(6,2) NOT NULL

1. Using a subquery, write an SQL statement to update the CUSTOMER_TBL table,
changing the customer name to DAVIDS MARKET, who has an order with order
number 23E934.

2. Using a subquery, write a query that returns all the names of all employees who
have a pay rate greater than JOHN DOE, whose employee identification number is
343559876.

3. Using a subquery, write a query that lists all products that cost more than the
average cost of all products.

Hour 15: Combining Multiple Queries into One
Overview

During this hour, you learn how to combine SQL queries into one by using the UNION, UNION ALL,
INTERSECT, and EXCEPT operators. Once again, you must check your particular implementation for any
variations in the use of the UNION, UNION ALL, INTERSECT, and EXCEPT operators.

 - 146 -

Single Queries Versus Compound Queries

The single query is one SELECT statement, while the compound query includes two or more SELECT
statements.

Compound queries are formed by using some type of operator that is used to join the two queries. The
UNION operator in the following examples is used to join two queries.

A single SQL statement could be written as follows:
SELECT EMP_ID, SALARY, PAY_RATE
FROM EMPLOYEE_PAY_TBL
WHERE SALARY IS NOT NULL OR
PAY_RATE IS NOT NULL;
This is the same statement using the UNION operator:
SELECT EMP_ID, SALARY
FROM EMPLOYEE_PAY_TBL
WHERE SALARY IS NOT NULL
UNION
SELECT EMP_ID, PAY_RATE
FROM EMPLOYEE_PAY_TBL
WHERE PAY_RATE IS NOT NULL;

The previous statements return pay information for all employees who are paid either hourly or salaried.
Note If you executed the second query, the output has two column headings: EMP_ID

and SALARY. Each individual's pay rate is listed under the SALARY column. When
using the UNION operator, column headings are determined by column names or
column aliases used in the first SELECT of the UNION.

Why Would I Ever Want to Use a Compound Query?

Compound operators are used to combine and restrict the results of two SELECT statements. These
operators can be used to return or suppress the output of duplicate records. Compound operators can bring
together similar data that is stored in different fields.

Compound queries allow you to combine the results of more than one query to return a single set of
data. Compound queries are often simpler to write than a single query with complex conditions.
Compound queries also allow for more flexibility regarding the never-ending task of data retrieval.

Compound Query Operators

The compound query operators vary among database vendors. The ANSI standard includes the UNION,
UNION ALL, EXCEPT, and INTERSECT operators, all of which are discussed in the following sections.

The UNION Operator
The UNION operator is used to combine the results of two or more SELECT statements without returning any
duplicate rows. In other words, if a row of output exists in the results of one query, the same row is not
returned, even though it exists in the second query that combined with a UNION operator. To use UNION,
each SELECT must have the same number of columns selected, the same number of column expressions,
the same data type, and have them in the same order—but they do not have to be the same length.

The syntax is as follows:
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
UNION
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]

 - 147 -

[WHERE]

Look at the following example:
SELECT EMP_ID FROM EMPLOYEE_TBL
UNION
SELECT EMP_ID FROM EMPLOYEE_PAY_TBL;
Analysis

Those employee IDs that are in both tables appear only once in the results.
This hour's examples begin with a simple SELECT from two tables:
Input
SELECT PROD_DESC FROM PRODUCTS_TBL;
Output
PROD_DESC

WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH
FALSE PARAFFIN TEETH
LIGHTED LANTERNS
ASSORTED COSTUMES
CANDY CORN
PUMPKIN CANDY
PLASTIC SPIDERS
ASSORTED MASKS
KEY CHAIN
OAK BOOKSHELF

11 rows selected.
Input
SELECT PROD_DESC FROM PRODUCTS_TMP;

Note The PRODUCTS_TMP table was created in Hour 3, "Managing Database Objects."
Refer back to Hour 3 if you need to re-create this table.

Output
PROD_DESC

WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH
FALSE PARAFFIN TEETH
LIGHTED LANTERNS
ASSORTED COSTUMES
CANDY CORN
PUMPKIN CANDY
PLASTIC SPIDERS
ASSORTED MASKS
KEY CHAIN
OAK BOOKSHELF

 - 148 -

11 rows selected.
Now, combine the same two queries with the UNION operator, making a compound query.
Input
SELECT PROD_DESC FROM PRODUCTS_TBL
UNION
SELECT PROD_DESC FROM PRODUCTS_TMP;
Output
PROD_DESC

ASSORTED COSTUMES
ASSORTED MASKS
CANDY CORN
FALSE PARAFFIN TEETH
LIGHTED LANTERNS
PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PUMPKIN CANDY
WITCHES COSTUME
KEY CHAIN
OAK BOOKSHELF

11 rows selected.
In the first query, nine rows of data were returned, and six rows of data were returned from the second
query. Nine rows of data are returned when the UNION operator combines the two queries. Only nine
rows are returned because duplicate rows of data are not returned when using the UNION operator.
The next example shows an example of combining two unrelated queries with the UNION operator:
Input
SELECT PROD_DESC FROM PRODUCTS_TBL
UNION
SELECT LAST_NAME FROM EMPLOYEE_TBL;
Output
PROD_DESC

ASSORTED COSTUMES
ASSORTED MASKS
CANDY CORN
FALSE PARAFFIN TEETH
GLASS
KEY CHAIN
LIGHTED LANTERNS
OAK BOOKSHELF
PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PLEW
PUMPKIN CANDY
SPURGEON
STEPHENS

 - 149 -

WALLACE
WITCHES COSTUME

16 rows selected.
The PROD_DESC and LAST_NAME values are listed together, and the column heading taken is from the
column name in the first query.
The UNION ALL Operator

The UNION ALL operator is used to combine the results of two SELECT statements including duplicate rows.
The same rules that apply to UNION apply to the UNION ALL operator. The UNION and UNION ALL
operators are the same, although one returns duplicate rows of data where the other does not.

The syntax is as follows:
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
UNION ALL
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]

Look at the following example:
SELECT EMP_ID FROM EMPLOYEE_TBL
UNION ALL
SELECT EMP_ID FROM EMPLOYEE_PAY_TBL
Analysis

The preceding SQL statement returns all employee IDs from both tables and shows duplicates.
The following is the same compound query in the previous section with the UNION ALL operator:
Input
SELECT PROD_DESC FROM PRODUCTS_TBL
UNION ALL
SELECT PROD_DESC FROM PRODUCTS_TMP;
Output
PROD_DESC

WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH
FALSE PARAFFIN TEETH
LIGHTED LANTERNS
ASSORTED COSTUMES
CANDY CORN
PUMPKIN CANDY
PLASTIC SPIDERS
ASSORTED MASKS
KEY CHAIN
OAK BOOKSHELF
WITCHES COSTUME
PLASTIC PUMPKIN 18 INCH
FALSE PARAFFIN TEETH

 - 150 -

LIGHTED LANTERNS
ASSORTED COSTUMES
CANDY CORN
PUMPKIN CANDY
PLASTIC SPIDERS
ASSORTED MASKS
KEY CHAIN
OAK BOOKSHELF

22 rows selected.

Notice that there were 22 rows returned in this query (9+6) because duplicate records are retrieved with
the UNION ALL operator.
The INTERSECT Operator

The INTERSECT operator is used to combine two SELECT statements, but returns rows only from the first
SELECT statement that are identical to a row in the second SELECT statement. Just as with the UNION
operator, the same rules apply when using the INTERSECT operator.

The syntax is as follows:
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
INTERSECT
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]

Look at the following example:
SELECT CUST_ID FROM CUSTOMER_TBL
INTERSECT
SELECT CUST_ID FROM ORDERS_TBL;
Analysis

The preceding SQL statement returns the customer identification for those customers who have placed
an order.
The following example illustrates the INTERSECT using the two original queries in this hour:
Input
SELECT PROD_DESC FROM PRODUCTS_TBL
INTERSECT
SELECT PROD_DESC FROM PRODUCTS_TMP;
Output
PROD_DESC

ASSORTED COSTUMES
ASSORTED MASKS
CANDY CORN
FALSE PARAFFIN TEETH
KEY CHAIN
LIGHTED LANTERNS

 - 151 -

OAK BOOKSHELF
PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PUMPKIN CANDY
WITCHES COSTUME

11 rows selected.

Only eleven rows are returned, because only eleven rows were identical between the output of the two
single queries.
The EXCEPT Operator

The EXCEPT operator combines two SELECT statements and returns rows from the first SELECT statement
that are not returned by the second SELECT statement. Once again, the same rules that apply to the UNION
operator also apply to the EXCEPT operator.

The syntax is as follows:
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
EXCEPT
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]

Study the following example:
SELECT PROD_DESC FROM PRODUCTS_TBL
EXCEPT
SELECT PROD_DESC FROM PRODUCTS_TMP;
Output
PROD_DESC

PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PUMPKIN CANDY

3 rows selected.

According to the results, there were three rows of data returned by the first query that were not returned
by the second query.

Note The EXCEPT operator is known as the MINUS operator in some implementations.
Check your implementation for the operator name that performs the EXCEPT
operator's function.

Input
SELECT PROD_DESC FROM PRODUCTS_TBL
MINUS
SELECT PROD_DESC FROM PRODUCTS_TMP;
Output
PROD_DESC

PLASTIC PUMPKIN 18 INCH

 - 152 -

PLASTIC SPIDERS
PUMPKIN CANDY

3 rows selected.

Using an ORDER BY with a Compound Query

The ORDER BY clause can be used with a compound query. However, the ORDER BY can only be used to
order the results of both queries. Therefore, there can be only one ORDER BY clause in a compound query,
even though the compound query may consist of multiple individual queries or SELECT statements. The
ORDER BY must reference the columns being ordered by an alias or by the number of column order.

The syntax is as follows:
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
OPERATOR{UNION | EXCEPT | INTERSECT | UNION ALL}
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
[ORDER BY]

Examine the following example:
SELECT EMP_ID FROM EMPLOYEE_TBL
UNION
SELECT EMP_ID FROM EMPLOYEE_PAY_TBL
ORDER BY 1;
Analysis

The results of the compound query are sorted by the first column of each individual query. Duplicate
records can easily be recognized by sorting compound queries.

Note The column in the ORDER BY clause is referenced by the number 1 instead of the
actual column name.

The preceding SQL statement returns the employee ID from the EMPLOYEE_TBL and the
EMPLOYEE_PAY_TBL, but does not show duplicates and orders by the employee ID.
The following example shows the use of the ORDER BY clause with a compound query. The column
name can be used in the ORDER BY clause if the column sorted by has the same name in all individual
queries of the statement.
Input
SELECT PROD_DESC FROM PRODUCTS_TBL
UNION
SELECT PROD_DESC FROM PRODUCTS_TBL
ORDER BY PROD_DESC;
Output
PROD_DESC

ASSORTED COSTUMES
ASSORTED MASKS
CANDY CORN
FALSE PARAFFIN TEETH
KEY CHAIN
LIGHTED LANTERNS

 - 153 -

OAK BOOKSHELF
PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PUMPKIN CANDY
WITCHES COSTUME

11 rows selected.
The following query uses a numeric value in place of the actual column name in the ORDER BY clause:
Input
SELECT PROD_DESC FROM PRODUCTS_TBL
UNION
SELECT PROD_DESC FROM PRODUCTS_TBL
ORDER BY 1;
Output
PROD_DESC

ASSORTED COSTUMES
ASSORTED MASKS
CANDY CORN
FALSE PARAFFIN TEETH
KEY CHAIN
LIGHTED LANTERNS
OAK BOOKSHELF
PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PUMPKIN CANDY
WITCHES COSTUME

11 rows selected.

Using an ORDER BY with a Compound Query

The ORDER BY clause can be used with a compound query. However, the ORDER BY can only be used to
order the results of both queries. Therefore, there can be only one ORDER BY clause in a compound query,
even though the compound query may consist of multiple individual queries or SELECT statements. The
ORDER BY must reference the columns being ordered by an alias or by the number of column order.

The syntax is as follows:
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
OPERATOR{UNION | EXCEPT | INTERSECT | UNION ALL}
SELECT COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE]
[ORDER BY]

Examine the following example:
SELECT EMP_ID FROM EMPLOYEE_TBL

 - 154 -

UNION
SELECT EMP_ID FROM EMPLOYEE_PAY_TBL
ORDER BY 1;
Analysis

The results of the compound query are sorted by the first column of each individual query. Duplicate
records can easily be recognized by sorting compound queries.

Note The column in the ORDER BY clause is referenced by the number 1 instead of the
actual column name.

The preceding SQL statement returns the employee ID from the EMPLOYEE_TBL and the
EMPLOYEE_PAY_TBL, but does not show duplicates and orders by the employee ID.
The following example shows the use of the ORDER BY clause with a compound query. The column
name can be used in the ORDER BY clause if the column sorted by has the same name in all individual
queries of the statement.
Input
SELECT PROD_DESC FROM PRODUCTS_TBL
UNION
SELECT PROD_DESC FROM PRODUCTS_TBL
ORDER BY PROD_DESC;
Output
PROD_DESC

ASSORTED COSTUMES
ASSORTED MASKS
CANDY CORN
FALSE PARAFFIN TEETH
KEY CHAIN
LIGHTED LANTERNS
OAK BOOKSHELF
PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PUMPKIN CANDY
WITCHES COSTUME

11 rows selected.
The following query uses a numeric value in place of the actual column name in the ORDER BY clause:
Input
SELECT PROD_DESC FROM PRODUCTS_TBL
UNION
SELECT PROD_DESC FROM PRODUCTS_TBL
ORDER BY 1;
Output
PROD_DESC

ASSORTED COSTUMES
ASSORTED MASKS
CANDY CORN
FALSE PARAFFIN TEETH
KEY CHAIN

 - 155 -

LIGHTED LANTERNS
OAK BOOKSHELF
PLASTIC PUMPKIN 18 INCH
PLASTIC SPIDERS
PUMPKIN CANDY
WITCHES COSTUME

11 rows selected.

Retrieving Accurate Data

Be cautious when using the compound operators. Incorrect or incomplete data may be returned if you were
using the INTERSECT operator and you used the wrong SELECT statement as the first individual query. In
addition, consider whether duplicate records are wanted when using the UNION and UNION ALL operators.
What about EXCEPT? Do you need any of the rows that were not returned by the second query? As you can
see, the wrong compound query operator or the wrong order of individual queries in a compound query can
easily cause misleading data to be returned.

Note Incomplete data returned by a query qualifies as incorrect data.

Summary

You have been introduced to compound queries. All SQL statements previous to this hour have consisted of
a single query. Compound queries allow multiple individual queries to be used together as a single query to
achieve the data result set desired as output. The compound query operators discussed included UNION,
UNION ALL, INTERSECT, and EXCEPT (MINUS). UNION returns the output of two single queries without
displaying duplicate rows of data. UNION ALL simply displays all output of single queries, regardless of
existing duplicate rows. INTERSECT is used to return identical rows between two queries. EXCEPT (the same
as MINUS) is used to return the results of one query that do not exist in another query. Compound queries
provide greater flexibility when trying to satisfy the requirements of various queries, which, without the use of
compound operators, could result in very complex queries.

Q&A
Q. How are the columns referenced in the GROUP BY clause when using the

GROUP BY clause with a compound query?
A.

The columns can be referenced by the actual column name or by the
number of the column placement in the query if the column names are not
identical in the two queries.

Q. I understand what the EXCEPT operator does, but would the outcome
change if I were to reverse the SELECT statements?

A.

Yes. The order of the individual queries is very important when using the
EXCEPT or MINUS operator. Remember that all rows are returned from the
first query that are not returned by the second query. Changing the order of
the two individual queries in the compound query could definitely affect the
results.

Q. Must the data type and the length of columns in a compound query be the
same in both queries?

A. No. Only the data type must be the same. The length can differ.

Workshop
The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

 - 156 -

Quiz
1. Is the syntax correct for the following compound queries? If not, what would

correct the syntax? Use the EMPLOYEE_TBL and the EMPLOYEE_PAY_TBL shown
as follows:

EMPLOYEE_TBL

EMP_ID VARCHAR2(9) NOT NULL,

LAST_NAME VARCHAR2(15) NOT NULL,

FIRST_NAME VARCHAR2(15) NOT NULL,

MIDDLE_NAME VARCHAR2(15),

ADDRESS VARCHAR2(30) NOT NULL,

CITY VARCHAR2(15) NOT NULL,

STATE CHAR(2) NOT NULL,

ZIP NUMBER(5) NOT NULL,

PHONE CHAR(10),

PAGER CHAR(10),

2. CONSTRAINT EMP_PK PRIMARY KEY (EMP_ID)

EMPLOYEE_PAY_TBL

EMP_ID VARCHAR2(9) NOT
NUL
L,

PRIMARY
KEY

POSITION VARCHAR2(15) NOT
NUL
L,

DATE_HIRE DATE,

PAY_RATE NUMBER(4,2) NOT
NUL
L,

DATE_LAST_RAISE DATE,

SALARY NUMBER(8,2),

BONUS NUMBER(6,2),

3. CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID)
4. REFERENCES EMPLOYEE_TBL (EMP_ID)

a. SELECT EMP_ID, LAST_NAME, FIRST_NAME
b. FROM EMPLOYEE_TBL
c. UNION
d. SELECT EMP_ID, POSITION, DATE_HIRE
e. FROM EMPLOYEE_PAY_TBL;
f. SELECT EMP_ID FROM EMPLOYEE_TBL
g. UNION ALL
h. SELECT EMP_ID FROM EMPLOYEE_PAY_TBL
i. ORDER BY EMP_ID;
j. SELECT EMP_ID FROM EMPLOYEE_PAY_TBL
k. INTERSECT
l. SELECT EMP_ID FROM EMPLOYEE_TBL
m. ORDER BY 1;

5. Match the correct operator to the following statements.
 STATEMENT OPERATOR

a. Show UNION

 - 157 -

duplicates

b. Return only
rows from the
first query
that match
those in the
second query

INTERSECT
UNION ALL
EXCEPT

c. Return no
duplicates

d. Return only
rows from the
first query not
returned by
the second

Exercises
Use the CUSTOMER_TBL and the ORDERS_TBL as listed:

CUSTOMER_TBL
CUST_IN VARCHAR2(10) NOT

NUL
L

PRIMARY KEY,

CUST_NAME VARCHAR2(30) NOT
NUL
L,

CUST_ADDRESS VARCHAR2(20) NOT
NUL
L,

CUST_CITY VARCHAR2(15) NOT
NUL
L,

CUST_STATE CHAR(2) NOT
NUL
L,

CUST_ZIP NUMBER(5) NOT
NUL
L,

CUST_PHONE NUMBER(10),
CUST_FAX NUMBER(10)
ORDERS_TBL
ORD_NUM VARCHAR2(10) NOT

NUL
L,

PRIMARY KEY,

CUST_ID VARCHAR2(10) NOT
NUL
L,

PROD_ID VARCHAR2(10) NOT
NUL
L,

QTY NUMBER(6) NOT
NUL
L,

ORD_DATE DATE
1. Write a compound query to find the customers that have placed an order.
2. Write a compound query to find the customers that have not placed an order.

 - 158 -

Part V: SQL Performance Tuning
Chapter List

Hour 16: Using Indexes to Improve Performance
Hour 17: Improving Database Performance

Hour 16: Using Indexes to Improve Performance
Overview

During this hour, you learn how to improve SQL statement performance by creating and using indexes.
You begin with the CREATE INDEX command and learn how to use indexes that have been created on
tables.

What Is an Index?

Simply put, an index is a pointer to data in a table. An index in a database is very similar to an index in the
back of a book. For example, if you want to reference all pages in a book that discuss a certain topic, you
first refer to the index, which lists all topics alphabetically, and are then referred to one or more specific page
numbers. An index in a database works the same way in that a query is pointed to the exact physical location
of data in a table. You are actually being directed to the data's location in an underlying file of the database,
but as far as you are concerned, you are referring to a table.

 New Term Which would be faster, looking through a book page by page for some information or
searching the book's index and getting a page number? Of course, using the book's index is the most
efficient method. A lot of time can be saved if that book is large. Say you have a small book of just a few
pages. In this case, it may be faster to check the pages for the information than to flip back and forth
between the index and pages of the book. When a database does not use an index, it is performing
what is typically called a full table scan, the same as flipping through a book page by page. Full table
scans are discussed in Hour 17, "Improving Database Performance."

An index is stored separately from the table for which the index was created. An index's main purpose is
to improve the performance of data retrieval. Indexes can be created or dropped with no effect on the
data. However, once dropped, performance of data retrieval may be slowed. An index does take up
physical space and often grows larger than the table itself.

How Do Indexes Work?

When an index is created, it records the location of values in a table that are associated with the column that
is indexed. Entries are added to the index when new data is added to the table. When a query is executed
against the database and a condition is specified on a column in the WHERE clause that is indexed, the index
is first searched for the values specified in the WHERE clause. If the value is found in the index, the index
returns the exact location of the searched data in the table. Figure 16.1 illustrates how an index functions.

Figure 16.1: Table access using an index.

Suppose the following query was issued:
SELECT *
FROM TABLE_NAME
WHERE NAME = 'SMITH';

 - 159 -

As shown in Figure 16.1, the NAME index is referenced to resolve the location of all names equal to
'SMITH'. After the location is determined, the data can be quickly retrieved from the table. The data, in
this case names, is alphabetized in the index.
A full table scan would occur if there were no index on the table and the same query was executed,
which means that every row of data in the table would be read to retrieve information pertaining to all
individuals with the name SMITH.

The CREATE INDEX Command

The CREATE INDEX statement, as with many other statements in SQL, varies greatly among different
relational database vendors. Most relational database implementations use the CREATE INDEX statement:

CREATE INDEX INDEX_NAME ON TABLE_NAME
The syntax is where the vendors start varying greatly on the CREATE INDEX statement options. Some
implementations allow the specification of a storage clause (as with the CREATE TABLE statement),
ordering (DESC||ASC), and the use of clusters. You must check your particular implementation for its
correct syntax.

Types of Indexes

There are different types of indexes that can be created on tables in a database, all of which serve the same
goal—to improve database performance by expediting data retrieval. This hour discusses single-column
indexes, composite indexes, and unique indexes.

Note Indexes can be created during table creation in some implementations. Most
implementations accommodate a command, aside from the CREATE TABLE
command, used to create indexes. You must check your particular
implementation for the exact syntax for the command, if any, that is available to
create an index.

Single-Column Indexes
Indexing on a single column of a table is the simplest and most common manifestation of an index.
Obviously, a single-column index is one that is created based on only one table column. The basic syntax is
as follows:

CREATE INDEX INDEX_NAME
ON TABLE_NAME (COLUMN_NAME)
For example, if you want to create an index on the EMPLOYEE_TBL table for employees' last names, the
command used to create the index would look like the following:
CREATE INDEX NAME_IDX
ON EMPLOYEE_TBL (LAST_NAME);

Note You should plan your tables and indexes. Do not assume that because an index
has been created that all performance issues are resolved. The index may not
help at all (it may actually hinder performance) and may just take up disk space.

Tip Single-column indexes are most effective when used on columns that are
frequently used alone in the WHERE clause as query conditions. Good candidates
for a single-column index are an individual identification number, a serial number,
or a system-assigned key.

Unique Indexes
 New Term Unique indexes are used not only for performance, but also for data integrity. A unique index
does not allow any duplicate values to be inserted into the table. Otherwise, the unique index performs the
same way a regular index performs. The syntax is as follows:

CREATE UNIQUE INDEX INDEX_NAME
ON TABLE_NAME (COLUMN_NAME)
If you want to create a unique index on the EMPLOYEE_TBL table for an employee's last name, the
command used to create the unique index would look like the following:
CREATE UNIQUE INDEX NAME_IDX
ON EMPLOYEE_TBL (LAST_NAME);

 - 160 -

The only problem with this index is that every individual's last name in the EMPLOYEE_TBL table must
be unique—pretty impractical. However, a unique index should be created for a column, such as an
individual's Social Security number, because each of these numbers for each individual is unique.

You may be wondering, "What if an employee's SSN were the primary key for a table?" An index is
usually implicitly created when you define a primary key for a table. However, a company can use a
fictitious number for an employee ID, but maintain each employees' SSN for tax purposes. You probably
want to index this column and ensure that all entries into this column are unique values.

Note The unique index can only be created on a column in a table whose values are
unique. In other words, you cannot create a unique index on an existing table with
data that already contains records on the indexed key.

Composite Indexes
 New Term A composite index is an index on two or more columns of a table. You should consider
performance when creating a composite index because the order of columns in the index has a measurable
effect on data retrieval speed. Generally, the most restrictive value should be placed first for optimum
performance. However, the columns that will always be specified should be placed first. The syntax is as
follows:

CREATE INDEX INDEX_NAME
ON TABLE_NAME (COLUMN1, COLUMN2)

An example of a composite index follows:
CREATE INDEX ORD_IDX
ON ORDERS_TBL (CUST_ID, PROD_ID);
In this example, you create a composite index based on two columns in the ORDERS_TBL table:
CUST_ID and PROD_ID. You assume that these two columns are frequently used together as
conditions in the WHERE clause of a query.

Tip Composite indexes are most effective on table columns that are used together
frequently as conditions in a query's WHERE clause.

Single-Column Versus Composite Indexes
In deciding whether to create a single-column index or a composite index, take into consideration the
column(s) that you may use very frequently in a query's WHERE clause as filter conditions. Should there be
only one column used, a single-column index should be the choice. Should there be two or more columns
that are frequently used in the WHERE clause as filters, the composite index would be the best choice.

Implicit Indexes
 New Term Implicit indexes are indexes that are automatically created by the database server when an
object is created. Indexes are automatically created for primary key constraints and unique constraints. Why
are indexes automatically created for these constraints? Imagine that you are the database server. A user
adds a new product to the database. The product identification is the primary key on the table, which means
that it must be a unique value. To efficiently check to make sure the new value is unique among hundreds or
thousands of records, the product identifications in the table must be indexed. Therefore, when you create a
primary key or unique constraint, an index is automatically created for you.

When Should Indexes Be Considered?
Unique indexes are implicitly used in conjunction with a primary key for the primary key to work. Foreign keys
are also excellent candidates for an index because they are often used to join the parent table. Most, if not
all, columns used for table joins should be indexed.

Columns that are frequently referenced in the ORDER BY and GROUP BY clauses should be considered
for indexes. For example, if you are sorting on an individual's name, it would be quite beneficial to have
any index on the name column. It renders an automatic alphabetical order on every name, thus
simplifying the actual sort operation and expediting the output results.
Furthermore, indexes should be created on columns with a high number of unique values, or columns
when used as filter conditions in the WHERE clause return a low percentage of rows of data from a table.
This is where trial and error may come into play. Just as production code and database structures
should always be tested before their implementation into production, so should indexes. This testing is

 - 161 -

time that should be spent trying different combinations of indexes, no indexes, single-column indexes,
and composite indexes. There is no cut-and-dried rule for using indexes. The effective use of indexes
requires a thorough knowledge of table relationships, query and transaction requirements, and the data
itself.

When Should Indexes Be Avoided?

Although indexes are intended to enhance a database's performance, there are times when they should be
avoided. The following guidelines indicate when the use of an index should be reconsidered:

 Indexes should not be used on small tables.
 Indexes should not be used on columns that return a high percentage of data rows

when used as a filter condition in a query's WHERE clause. For instance, you would not
have an entry for the word "the" or "and" in the index of a book.

 Tables that have frequent, large batch update jobs run can be indexed. However, the
batch job's performance is slowed considerably by the index. The conflict of having an
index on a table that is frequently loaded or manipulated by a large batch process can
be corrected by dropping the index before the batch job, and then re-creating the index
after the job has completed.

 Indexes should not be used on columns that contain a high number of NULL values.
 Columns that are frequently manipulated should not be indexed. Maintenance on the

index can become excessive.
Warning Caution should be taken when creating indexes on a table's extremely long

keys because performance is inevitably slowed by high I/O costs.
You can see in Figure 16.2 that an index on a column, such as sex, may not prove beneficial. For
example, suppose the following query was submitted to the database:

Figure 16.2: When to avoid using an index.

SELECT *
FROM TABLE_NAME
WHERE GENDER = 'FEMALE';
By referring to Figure 16.2, which is based on the previous query, you can see that there is constant
activity between the table and its index. Because a high number of data rows is returned WHERE
GENDER = 'FEMALE' (or MALE), the database server constantly has to read the index, and then the
table, and then the index, and then the table, and so on. In this case, it may be more efficient for a full
table scan to occur because a high percentage of the table must be read anyway.

As a general rule, you do not want to use an index on a column used in a query's condition that will
return a high percentage of data rows from the table. In other words, do not create an index on a
column, such as sex, or any column that contains very few distinct values.

Tip Indexes can be very good for performance, but in some cases may actually hurt
performance. Refrain from creating indexes on columns that will contain few unique
values, such as sex, state of residence, and so on.

Dropping an Index
An index can be dropped rather simply. Check your particular implementation for the exact syntax, but most
major implementations use the DROP command. Care should be taken when dropping an index because
performance may be slowed drastically (or improved!). The syntax is as follows:

DROP INDEX INDEX_NAME

 - 162 -

The most common reason for dropping an index is in an attempt to improve performance. Remember
that if you drop an index, you can also re-create it. Indexes may need to be rebuilt sometimes to reduce
fragmentation. It is often necessary to experiment with the use of indexes in a database to determine
the route to best performance, which may involve creating an index, dropping it, and eventually re-
creating it, with or without modifications.

Summary

You have learned that indexes can be used to improve the overall performance of queries and transactions
performed within the database. Database indexes, like an index of a book, allow specific data to be quickly
referenced from a table. The most common method for creating indexes is through use of the CREATE
INDEX command. There are different types of indexes available among various SQL implementations.
Unique indexes, single-column indexes, and composite indexes are among those different types of indexes.
There are many factors to consider when deciding on the index type used to best meet the needs of your
database. The effective use of indexes often requires some experimentation, a thorough knowledge of table
relationships and data, and a little patience—but patience now can save minutes, hours, or even days of
work later.

Q&A
Q. Does an index actually take up space the way a table does?
A. Yes. An index takes up physical space in a database. In fact, an index can

become much larger than the table for which the index was created.
Q. If you drop an index for a batch job to complete faster, how long does it take

to re-create the index?
A. Many factors are involved, such as the size of the index being dropped,

CPU usage, and the machine's power.
Q. Should all indexes be unique indexes?
A. No. Unique indexes allow no duplicate values. There may be a need for the

allowance of duplicate values in a table.

Workshop
The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. What are some major disadvantages of using indexes?
2. Why is the order of columns in a composite important?
3. Should a column with a large percentage of NULLs be indexed?
4. Is the main purpose of an index to stop duplicate values in a table?
5. True or false: The main reason for a composite index is for aggregate function

usage in an index.

Exercises
1. For the following situations, decide whether an index should be used and, if so,

what type of index should be used.
a. Several columns, but a rather small table.
b. Medium-sized table, no duplicates should be allowed.
c. Several columns, very large table, several columns used as filters in

the WHERE clause.
d. Large table, many columns, a lot of data manipulation.

Hour 17: Improving Database Performance

 - 163 -

Overview
During this hour, you learn how to tune your SQL statement for maximum performance using some very
simple methods.

What Is SQL Statement Tuning?
SQL statement tuning is the process of optimally building SQL statements to achieve results in the most
effective and efficient manner. SQL tuning begins with the basic arrangement of the elements in a query.
Simple formatting plays a rather large role in the optimization of a statement.

SQL statement tuning mainly involves tweaking a statement's FROM and WHERE clauses. It is in these
two clauses that the database server decides how to evaluate a query. To this point, you have learned
the FROM and WHERE clauses' basics. Now it is time to learn how to fine-tune them for better results and
happier users.

Database Tuning Versus SQL Tuning

Before continuing with your SQL statement tuning lesson, it is important to understand the difference
between tuning a database and tuning the SQL statements that access the database.

 New Term Database tuning is the process of tuning the actual database, which encompasses the
allocated memory, disk usage, CPU, I/O, and underlying database processes. Tuning a database also
involves the management and manipulation of the database structure itself, such as the design and
layout of tables and indexes. There are many other considerations when tuning a database, but these
tasks are normally accomplished by the database administrator. The objective of database tuning is to
ensure that the database has been designed in a way that best accommodates expected activity within
the database.
 New Term SQL tuning is the process of tuning the SQL statements that access the database. These
SQL statements include database queries and transactional operations such as inserts, updates, and
deletes. The objective of SQL statement tuning is to formulate statements that most effectively access
the database in its current state, taking advantage of database and system resources and indexes.

Note Both database tuning and SQL statement tuning must be performed to achieve
optimal results when accessing the database. A poorly tuned database may very
well render wasted effort in SQL tuning, and vice versa.

Formatting Your SQL Statement

Formatting your SQL statement sounds like an obvious statement; as obvious as it may sound, it is worth
mentioning. There are several things that a newcomer to SQL will probably not take into consideration when
building an SQL statement. The following sections discuss the listed considerations; some are common
sense, others are not so obvious:

 Formatting SQL statements for readability
 The order of tables in the FROM clause
 The placement of the most restrictive conditions in the WHERE clause
 The placement of join conditions in the WHERE clause

Note Most relational database implementations have what is called an SQL optimizer,
which evaluates an SQL statement and determines the best method for executing
the statement based on the way an SQL statement is written and the availability
of indexes in the database. Not all optimizers are the same. Please check your
implementation or consult the database administrator to learn how the optimizer
reads SQL code. You should understand how the optimizer works to effectively
tune an SQL statement.

Formatting a Statement for Readability
Formatting an SQL statement for readability is pretty obvious, but many SQL statements have not been
written neatly. Although the neatness of a statement does not affect the actual performance (the database
does not care how neat the statement appears), careful formatting is the first step in tuning a statement.
When you look at an SQL statement with tuning intentions, making the statement readable is always the first
thing to do. How can you determine if the statement is written well if it is difficult to read?

Some basic rules for making a statement readable include:

 - 164 -

 Always begin a new line with each clause in the statement—For example, place the
FROM clause on a separate line from the SELECT clause. Place the WHERE clause on
a separate line from the FROM clause, and so on.

 Use tabs or spaces for indentation when arguments of a clause in the statement
exceed one line.

 Use tabs and spaces consistently.
 Use table aliases when multiple tables are used in the statement—The use of the full

table name to qualify each column in the statement quickly clutters the statement
and makes reading it difficult.

 Use remarks sparingly in SQL statements if they are available in your specific
implementation—Remarks are great for documentation, but too many of them clutter
a statement.

 Begin a new line with each column name in the SELECT clause if many columns are
being selected.

 Begin a new line with each table name in the FROM clause if many tables are being
used.

 Begin a new line with each condition of the WHERE clause—You can easily see all
conditions of the statement and the order in which they are used.

The following is an example of an unreadable statement:
Input
SELECT CUSTOMER_TBL.CUST_ID, CUSTOMER_TBL.CUST_NAME,
CUSTOMER_TBL.CUST_PHONE, ORDERS_TBL.ORD_NUM, ORDERS_TBL.QTY
FROM CUSTOMER_TBL, ORDERS_TBL
WHERE CUSTOMER_TBL.CUST_ID = ORDERS_TBL.CUST_ID
AND ORDERS_TBL.QTY > 1 AND CUSTOMER_TBL.CUST_NAME LIKE 'G%'
ORDER BY CUSTOMER_TBL.CUST_NAME;
Output
CUST_ID CUST_NAME CUST_PHONE ORD_NUM QTY
---------- ------------------------------ ---------- -----------------
287 GAVINS PLACE 3172719991 18D778 10

1 row selected.

The following is an example of a reformatted statement for improved readability:
Input
SELECT C.CUST_ID,
 C.CUST_NAME,
 C.CUST_PHONE,
 O.ORD_NUM,
 O.QTY
FROM ORDERS_TBL O,
 CUSTOMER_TBL C
WHERE O.CUST_ID = C.CUST_ID
 AND O.QTY > 1
 AND C.CUST_NAME LIKE 'G%'
ORDER BY 2;
Output
CUST_ID CUST_NAME CUST_PHONE ORD_NUM QTY
---------- ------------------------------ ---------- ----------------- ---
287 GAVINS PLACE 3172719991 18D778 10

 - 165 -

1 row selected.
Both statements are exactly the same, but the second statement is much more readable. The second
statement has been greatly simplified by using table aliases, which have been defined in the query's
FROM clause. Spacing has been used to align the elements of each clause, making each clause stand
out.

Again, making a statement more readable does not directly improve its performance, but it assists you
in making modifications and debugging a lengthy and otherwise possibly complex statement. Now you
can easily identify the columns being selected, the tables being used, the table joins that are being
performed, and the conditions that are placed on the query.
Proper Arrangement of Tables in the FROM Clause

The arrangement or order of tables in the FROM clause may make a difference, depending on how the
optimizer reads the SQL statement. For example, it may be more beneficial to list the smaller tables first and
the larger tables last. Some users with lots of experience have found that listing the larger tables last in the
FROM clause proves to be more efficient.

The following is an example FROM clause:
FROM SMALLEST TABLE,
 LARGEST TABLE

Note Check your particular implementation for performance tips, if any, when listing
multiple tables in the FROM clause.

Proper Order of Join Conditions
As you learned in Hour 13, "Joining Tables in Queries," most joins use a BASE TABLE to link tables that
have one or more common columns on which to join. The BASE TABLE is the main table that most or all
tables are joined to in a query. The column from the BASE TABLE is normally placed on the right side of a
join operation in the WHERE clause. The tables being joined to the BASE TABLE are normally in order from
smallest to largest, similar to the tables listed in the FROM clause.

Should there not be a BASE TABLE, the tables should be listed from smallest to largest, with the largest
tables on the right side of the join operation in the WHERE clause. The join conditions should be in the
first position(s) of the WHERE clause followed by the filter clause(s), as shown in the following:
FROM TABLE1, Smallest Table
 TABLE2, to
 TABLE3 Largest Table, also BASE TABLE
WHERE TABLE1.COLUMN = TABLE3.COLUMN Join condition
 AND TABLE2.COLUMN = TABLE3.COLUMN Join condition
[AND CONDITION1] Filter condition
[AND CONDITION2] Filter condition
In this example, TABLE3 is used as the BASE TABLE. TABLE1 and TABLE2 are joined to TABLE3 for
both simplicity and proven efficiency.

Tip Because joins typically return a high percentage of rows of data from the table(s),
join conditions should be evaluated after more restrictive conditions.

The Most Restrictive Condition
The most restrictive condition is typically the driving factor in achieving optimal performance for an SQL
query. What is the most restrictive condition? The condition in the WHERE clause of a statement that returns
the fewest rows of data. Conversely, the least restrictive condition is the condition in a statement that returns
the most rows of data. This hour is concerned with the most restrictive condition simply because it is this
condition that filters the data that is to be returned by the query the most.

It should be your goal for the SQL optimizer to evaluate the most restrictive condition first because a
smaller subset of data is returned by the condition, thus reducing the query's overhead. The effective
placement of the most restrictive condition in the query requires knowledge of how the optimizer
operates. The optimizers worked with, in some cases, seem to read from the bottom of the WHERE
clause up. Therefore, you want to place the most restrictive condition last in the WHERE clause, which is
the condition that is first read by the optimizer.
FROM TABLE1, Smallest Table

 - 166 -

 TABLE2, to
 TABLE3 Largest Table, also BASE TABLE
WHERE TABLE1.COLUMN = TABLE3.COLUMN Join condition
 AND TABLE2.COLUMN = TABLE3.COLUMN Join condition
[AND CONDITION1] Least restrictive
[AND CONDITION2] Most restrictive

Tip If you do not know how your particular implementation's SQL optimizer works, the
DBA does not know, or you do not have sufficient documentation, you can execute
a large query that takes a while to run, and then rearrange conditions in the
WHERE clause. Be sure to record the time it takes the query to complete each time
you make changes. You should only have to run a couple of tests to figure out
whether the optimizer reads the WHERE clause from the top to bottom or bottom to
top.

The following is an example using a phony table:

Table: TEST

Row count: 95,867

Conditions: WHERE LAST_NAME = 'SMITH'
returns 2,000 rows
WHERE CITY = 'INDIANAPOLIS'
returns 30,000 rows

Most restrictive
condition is:

WHERE LAST_NAME = 'SMITH'

QUERY1:
Input
SELECT COUNT(*)
FROM TEST
WHERE LAST_NAME = 'SMITH'
 AND CITY = 'INDIANAPOLIS';
Output
 COUNT(*)

 1,024
QUERY2:
Input
SELECT COUNT(*)
FROM TEST
WHERE CITY = 'INDIANAPOLIS'
 AND LAST_NAME = 'SMITH';
Output
 COUNT(*)

 1,024
Suppose that QUERY1 completed in 20 seconds, whereas QUERY2 completed in 10 seconds. Because
QUERY2 returned faster results and the most restrictive condition was listed last in the WHERE clause, it
would be safe to assume that the optimizer reads the WHERE clause from the bottom up.

Note It is a good practice to try to use an indexed column as the most restrictive
condition in a query. Indexes generally improve a query's performance.

 - 167 -

Full Table Scans
A full table scan occurs when an index is either not used or there is no index on the table(s) being used by
the SQL statement. Full table scans usually return data much slower than when an index is used. The larger
the table, the slower that data is returned when a full table scan is performed. The query optimizer decides
whether to use an index when executing the SQL statement. The index is used—if it exists—in most cases.

Some implementations have sophisticated query optimizers that can decide whether an index should be
used. Decisions such as this are based on statistics that are gathered on database objects, such as the
size of an object and the estimated number of rows that are returned by a condition with an indexed
column. Please refer to your implementation documentation for specifics on the decision-making
capabilities of your relational database's optimizer.

When and How to Avoid Full Table Scans
Full table scans should be avoided when reading large tables. For example, a full table scan is performed
when a table that does not have an index is read, which usually takes a considerably longer time to return
the data. An index should be considered for most larger tables. On small tables, as previously mentioned,
the optimizer may choose the full table scan over using the index, if the table is indexed. In the case of a
small table with an index, consideration should be given to dropping the index and reserving the space that
was used for the index for other needy objects in the database.

Tip The easiest and most obvious way to avoid a full table scan—outside of ensuring
that indexes exist on the table—is to use conditions in a query's WHERE clause to
filter data to be returned.

The following is a reminder of data that should be indexed:
 Columns used as primary keys
 Columns used as foreign keys
 Columns frequently used to join tables
 Columns frequently used as conditions in a query
 Columns that have a high percentage of unique values

Note Sometimes full table scans are good. Full table scans should be performed on
queries against small tables or queries whose conditions return a high percentage
of rows. The easiest way to force a full table scan is to avoid creating an index on
the table.

Other Performance Considerations

There are other performance considerations that should be noted when tuning SQL statements. The
following concepts are discussed in the next sections:

 Using the LIKE operator and wildcards
 Avoiding the OR operator
 Avoiding the HAVING clause
 Avoiding large sort operations
 Using stored procedures

Using the LIKE Operator and Wildcards
The LIKE operator is a useful tool that is used to place conditions on a query in a flexible manner. The
placement and use of wildcards in a query can eliminate many possibilities of data that should be retrieved.
Wildcards are very flexible for queries that search for similar data (data that is not equivalent to an exact
value specified).

Suppose you want to write a query using the EMPLOYEE_TBL selecting the EMP_ID, LAST_NAME,
FIRST_NAME, and STATE columns. You need to know the employee identification, name, and state for
all the employees with the last name Stevens. Three SQL statement examples with different wildcard
placements serve as examples.
QUERY1:
SELECT EMP_ID, LAST_NAME, FIRST_NAME, STATE
FROM EMPLOYEE_TBL
WHERE LAST_NAME LIKE '%E%';
QUERY2:

 - 168 -

SELECT EMP_ID, LAST_NAME, FIRST_NAME, STATE
FROM EMPLOYEE_TBL
WHERE LAST_NAME LIKE '%EVENS%';
QUERY3:
SELECT EMP_ID, LAST_NAME, FIRST_NAME, STATE
FROM EMPLOYEE_TBL
WHERE LAST_NAME LIKE 'ST%';
The SQL statements do not necessarily return the same results. More than likely, QUERY1 will return
more rows than the other two queries. QUERY2 and QUERY3 are more specific as to the data desired for
return, thus eliminating more possibilities than QUERY1 and speeding data retrieval time. Additionally,
QUERY3 is probably faster than QUERY2 because the first letters of the string for which you are
searching are specified (and the column LAST_NAME is likely to be indexed). QUERY3 can take
advantage of an index.

Note With QUERY1, you might retrieve all individuals with the last name Stevens; but
can't Stevens also be spelled different ways? QUERY2 picks up all individuals with
the last name Stevens and its various spellings. QUERY3 also picks up any last
name starting with St; this is the only way to assure that you receive all the
Stevens (Stephens).

Avoiding the OR Operator
Rewriting the SQL statement using the IN predicate instead of the OR operator consistently and substantially
improves data retrieval speed. Your implementation will tell you about tools you can use to time or check the
performance between the OR operator and the IN predicate. An example of how to rewrite an SQL statement
taking the OR operator out and replacing the OR operator with the IN predicate follows:

Note Hour 8, "Using Operators to Categorize Data," can be referenced for the use of
the OR operator and the IN predicate.

The following is a query using the OR operator:

SELECT EMP_ID, LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE CITY = 'INDIANAPOLIS'
 OR CITY = 'BROWNSBURG'
 OR CITY = 'GREENFIELD';
The following is the same query using the IN operator:
SELECT EMP_ID, LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE CITY IN ('INDIANAPOLIS', 'BROWNSBURG',
 'GREENFIELD');
The SQL statements retrieve the very same data; however, through testing and experience, you find
that the data retrieval is measurably faster by replacing OR conditions with the IN, as in the second
query.
Avoiding the HAVING Clause

The HAVING clause is a useful clause; however, you can't use it without cost. Using the HAVING clause
causes the SQL optimizer extra work, which results in extra time. If possible, SQL statements should be
written without the use of the HAVING clause.

Avoid Large Sort Operations
Large sort operations mean the use of the ORDER BY, GROUP BY, and HAVING clauses. Subsets of data
must be stored in memory or to disk (if there is not enough space in allotted memory) whenever sort
operations are performed. You must often sort data. The main point is that these sort operations affect an
SQL statement's response time.

 - 169 -

Use Stored Procedures
Stored procedures should be created for SQL statements executed on a regular basis—particularly large
transactions or queries. Stored procedures are simply SQL statements that are compiled and permanently
stored in the database in an executable format.

 New Term Normally, when an SQL statement is issued in the database, the database must check the
syntax and convert the statement into an executable format within the database (called parsing). The
statement, once parsed, is stored in memory; however, it is not permanent. This means that when
memory is needed for other operations, the statement may be ejected from memory. In the case of
stored procedures, the SQL statement is always available in an executable format and remains in the
database until it is dropped like any other database object. Stored procedures are discussed in more
detail in Hour 22, "Advanced SQL Topics."

Disabling Indexes During Batch Loads
When a user submits a transaction to the database (INSERT, UPDATE, or DELETE), an entry is made to both
the database table and any indexes associated with the table being modified. This means that if there is an
index on the EMPLOYEE table, and a user updates the EMPLOYEE table, an update also occurs to the index
associated with the EMPLOYEE table. In a transactional environment, the fact that a write to an index occurs
every time a write to the table occurs is usually not an issue.

During batch loads, however, an index can actually cause serious performance degradation. A batch
load may consist of hundreds, thousands, or millions of manipulation statements or transactions.
Because of their volume, batch loads take a long time to complete and are normally scheduled during
off-peak hours—usually during weekends or evenings. To optimize performance during a batch load—
which may equate to decreasing the time it takes the batch load to complete from 12 hours to 6 hours—
it is recommended that the indexes associated with the table affected during the load are dropped.
When the indexes are dropped, changes are written to the tables much faster, so the job completes
faster. When the batch load is complete, the indexes should be rebuilt. During the rebuild of the
indexes, the indexes will be populated with all of the appropriate data from the tables. Although it may
take a while for an index to be created on a large table, the overall time expended if you drop the index
and rebuild it is less.

Another advantage to rebuilding an index after a batch load completes is the reduction of fragmentation
that is found in the index. When a database grows, records are added, removed, and updated, and
fragmentation can occur. For any database that experiences a lot of growth, it is a good idea to
periodically drop and rebuild large indexes. When an index is rebuilt, the number of physical extents that
comprise the index are decreased, there is less disk I/O involved to read the index, the user gets results
faster, and everyone is happy.

Performance Tools

Many relational databases have built-in tools that assist in SQL statement and database performance tuning.
For example, Oracle has a tool called EXPLAIN PLAN that shows the user the execution plan of an SQL
statement. There is another tool in Oracle that measures the actual elapsed time of a SQL statement—
TKPROF. In SQL Server, there are numerous SET commands that can be used to measure the performance
of the database and SQL statements. Check with your DBA and implementation documentation for more
information on tools that may be available to you.

Summary
You have learned the meaning of tuning SQL statements in a relational database. You have learned that
there are two basic types of tuning: database tuning and SQL statement tuning—both of which are vital to
the efficient operation of the database and SQL statements within it. Each is equally important and cannot be
optimally tuned without the other. Tuning the database falls to the DBA, whereas tuning SQL statements falls
to the individuals writing the statements. This book is more concerned with the latter.

You have read about methods for tuning an SQL statement, starting with a statement's actual
readability, which does not directly improve performance but aids the programmer in the development
and management of statements. One of the main issues in SQL statement performance is the use of
indexes. There are times to use indexes and times to avoid using them. A full table scan is performed
when a table is read and an index is not used. In a full table scan, each row of data in a table is
completely read. Other considerations for statement tuning, such as the arrangement of elements in a
query, were discussed. Of foremost importance is the placement of the most restrictive condition in a

 - 170 -

statement's WHERE clause. For all measures taken to improve SQL statement performance, it is
important to understand the data itself, database design and relationships, and the users' needs as far
as accessing the database.

Like building indexes on tables, SQL statement tuning often involves extensive testing, which can be
qualified as trial and error. There is no one way to tune a database or SQL statements within a
database. All databases are different, as the business needs for each company are different. These
differences affect the data within the database and the methods in which the data is retrieved. It is your
job to crack the riddle of the most efficient SQL statement design for optimal database performance.

&A

Q. By following what I have learned about performance, what realistic
performance gains, as far as data retrieval time, can I really expect to see?

A. Realistically, you could see performance gains from fractions of a second to
minutes, hours, or even days.

Q. How can I test my SQL statements for performance?
A.

Each implementation should have a tool or system to check performance.
Oracle7 was used to test the SQL statements in this book. Oracle has
several tools for use in checking performance. Some of these tools are
called EXPLAIN PLAN, TKPROF, and SET commands. Check your particular
implementation for tools that are similar to Oracle's.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. Would the use of a unique index on a small table be of any benefit?
2. What happens when the optimizer chooses not to use an index on a table when a

query has been executed?
3. Should the most restrictive clause(s) be placed before the join condition(s) or after

the join conditions in the WHERE clause?

Exercises
Rewrite the following SQL statements to improve their performance. Use the EMPLOYEE_TBL and the
EMPLOYEE_PAY_TBL as described here:

EMPLOYEE_TBL
EMP_ID VARCHAR2(9) NOT

NUL
L,

PRIMARY KEY

LAST_NAME VARCHAR2(15) NOT
NUL
L,

FIRST_NAME VARCHAR2(15) NOT
NUL
L,

MIDDLE_NAME VARCHAR2(15),
ADDRESS VARCHAR2(30) NOT

NUL
L,

CITY VARCHAR2(15) NOT
NUL
L,

STATE CHAR(2) NOT

 - 171 -

NUL
L,

ZIP NUMBER(5) NOT
NUL
L,

PHONE CHAR(10),
PAGER CHAR(10),

CONSTRAINT EMP_PK PRIMARY KEY (EMP_ID)
EMPLOYEE_PAY_TBL
EMP_ID VARCHAR

2(9)
NOT
NULL
,

PRIMARY KEY

POSITION VARCHAR
2(15)

NOT
NULL
,

DATE_HIRE DATE,
PAY_RATE NUMBER(

4,2)
NOT
NULL
,

DATE_LAST_RA
ISE

DATE,

SALARY NUMBER(
8,2),

BONUS NUMBER(
8,2),

CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID)
 REFERENCES EMPLOYEE_TBL (EMP_ID)

 a.
 SELECT EMP_ID, LAST_NAME, FIRST_NAME,
 PHONE
 FROM EMPLOYEE_TBL
 WHERE SUBSTR(PHONE, 1, 3) = '317' OR
 SUBSTR(PHONE, 1, 3) = '812' OR

 SUBSTR(PHONE, 1, 3) = '765';
 b.
 SELECT LAST_NAME, FIRST_NAME
 FROM EMPLOYEE_TBL

 WHERE LAST_NAME LIKE '%ALL%;
 c.
 SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME,
 EP.SALARY
 FROM EMPLOYEE_TBL E,
 EMPLOYEE_PAY_TBL EP
 WHERE LAST_NAME LIKE 'S%'
 AND E.EMP_ID = EP.EMP_ID;

Part VI: Using SQL to Manage Users and Security
Chapter List

Hour 18: Managing Database Users
Hour 19: Managing Database Security

 - 172 -

Hour 18: Managing Database Users
Overview

During this hour, you learn about one of the most fundamental purposes for any relational database:
managing database users. You will learn the concepts behind creating users in SQL, user security, the user
versus the schema, user profiles, user attributes, and tools users utilize.

Note The SQL standard refers to a database user identification as an Authorization
Identifier (authID). In most major implementations, authIDs are referred to
simply as users. This book refers to Authorization Identifiers as users, database
users, usernames, or database user accounts. The SQL standard states that the
Authorization Identifier is a name by which the system knows the database user.

Users Are the Reason

Users are the reason for the season—the season of designing, creating, implementing, and maintaining any
database. The user's needs are taken into consideration when the database is designed, and the final goal in
implementing a database is making the database available to users, who in turn utilize the database that you
and possibly many others have had a hand in developing.

A common perception of users is that if there were no users, nothing bad would ever happen to the
database. Although this statement reeks with truth, the database was nevertheless created to hold data
so that users can function in their day-to-day jobs.

Although user management is often the database administrator's implicit task, other individuals
sometimes take a part in the user management process. User management is vital in the life of a
relational database and is ultimately managed through the use of SQL concepts and commands,
although varied from vendor to vendor.

Types of Users
There are several types of database users:

 Data entry clerks
 Programmers
 System engineers
 Database administrators
 System analysts
 Developers
 Testers
 Management
 End user

Each type of user has its own set of job functions (and problems), all of which are critical to their daily
survival and job security. Furthermore, each type of user has different levels of authority and its own
place in the database.

Who Manages Users?
A company's management staff is responsible for the day-to-day management of users; however, the
database administrator or other assigned individuals are ultimately responsible for the management of users
within the database.

The database administrator usually handles the creation of the database user accounts, roles,
privileges, profiles, as well as dropping those user accounts from the database. Because it can become
an overwhelming task in a large and active environment, some companies have a security officer who
assists the database administrator with the user management process.
The security officer, if one is assigned, is usually responsible for the paperwork, relaying to the
database administrator a user's job requirements, and letting the database administrator know when a
user no longer requires access to the database.

 - 173 -

The system analyst, or system administrator, is usually responsible for the operating system security,
which entails creating users and assigning appropriate privileges. The security officer also may assist
the system analyst in the same way he or she does the database administrator.

The User's Place in the Database
A user should be given the roles and privileges necessary to accomplish his or her job. No user should have
database access that extends beyond the scope of his or her job duties. Protecting the data is the whole
reason for setting up user accounts and security. Data can be damaged or lost, even if unintentionally, if the
wrong user has access to the wrong data. When the user no longer requires database access, that user's
account should be either removed from the database or disabled.

All users have their place in the database; some have more responsibilities than others. Database users
are like parts of a human body—all work together in unison (at least that is the way it is supposed to be)
to accomplish some goal.

How Does a User Differ from a Schema?
 New Term A database's objects are associated with database user accounts, called schemas. A schema is
a set of database objects that a database user owns. This database user is called the schema owner. The
difference between a regular database user and a schema owner is that a schema owner owns objects
within the database, whereas most users do not own objects. Most users are given database accounts to
access data that is contained in other schemas.

The Management Process
A stable user management system is mandatory for data security in any database system. The user
management system starts with the new user's immediate supervisor, who should initiate the access
request, and then go through the company's approval authorities, at which time the request, if accepted by
management, is routed to the security officer or database administrator, who takes action. A good notification
process is necessary; the supervisor and the user must be notified that the user account has been created
and that access to the database has been granted. The user account password should only be given to the
user, who should immediately change the password upon initial login to the database.

Note You must check your particular implementation for the creation of users. Also
refer to company policies and procedures when creating and managing users.
The following section compares the user creation processes in Oracle, Sybase,
and Microsoft SQL Server.

Creating Users
The creation of database users involves the use of SQL-type commands within the database. There is no
one standard command for creating database users in SQL; each implementation has a method for doing so.
Some implementations have similar commands, while others vary in syntax. The basic concept is the same,
regardless of the implementation.

When the database administrator or assigned security officer receives a user account request, the
request should be analyzed for the necessary information. The information should include your
particular company's requirements for establishing a user ID.

Some items that should be included are Social Security number, full name, address, phone number,
office or department name, assigned database, and sometimes, a suggested user ID.

There are syntactical examples of creating users compared between two different implementations
shown in the following sections.

Creating Users in Oracle
Steps for creating a user account in an Oracle database:

1. Create the database user account with default settings.
2. Grant appropriate privileges to the user account.

The following is the syntax for creating a user:

 - 174 -

CREATE USER USER_ID
IDENTIFIED BY [PASSWORD | EXTERNALLY]
[DEFAULT TABLESPACE TABLESPACE_NAME]
[TEMPORARY TABLESPACE TABLESPACE_NAME]
[QUOTA (INTEGER (K | M) | UNLIMITED) ON TABLESPACE_NAME]
[PROFILE PROFILE_TYPE]
[PASSWORD EXPIRE |ACCOUNT [LOCK | UNLOCK]

Note The previous syntax for creating users can be used to add a user to an Oracle
database, as well as a few other, major relational database implementations.

 New Term If you are not using Oracle, do not overly concern yourself with some of the options in this
syntax. A tablespace is a logical area that houses database objects, such as tables and indexes. The
DEFAULT TABLESPACE is the tablespace in which objects created by the particular user reside. The
TEMPORARY TABLESPACE is the tablespace used for sort operations (table joins, ORDER BY, GROUP
BY) from queries executed by the user. The QUOTA is space limits placed on a particular tablespace to
which the user has access. PROFILE is a particular database profile that has been assigned to the user.

The following is the syntax for granting privileges to the user account:
GRANT PRIV1 [, PRIV2, ...] TO USERNAME | ROLE [, USERNAME]
The GRANT statement can grant one or more privileges to one or more users in the same statement.
The privilege(s) can also be granted to a role, which in turn can be granted to a user(s).

Creating Users in Sybase and Microsoft SQL Server
The steps for creating a user account in a Sybase and Microsoft SQL Server database follow:

1. Create the database user account for SQL Server and assign a password and
a default database for the user.

2. Add the user to the appropriate database(s).
3. Grant appropriate privileges to the user account.

The following is the syntax for creating the user account:
SP_ADDLOGIN USER_ID ,PASSWORD [, DEFAULT_DATABASE]

The following is the syntax for adding the user to a database:
SP_ADDUSER USER_ID [, NAME_IN_DB [, GRPNAME]]

The following is the syntax for granting privileges to the user account:
GRANT PRIV1 [, PRIV2, ...] TO USER_ID

Note The discussion of privileges within a relational database are further elaborated on
during Hour 19, "Managing Database Security."

CREATE SCHEMA
Schemas are created via the CREATE SCHEMA statement.

The following is the syntax:
CREATE SCHEMA [SCHEMA_NAME] [USER_ID]
 [DEFAULT CHARACTER SET CHARACTER_SET]
 [PATH SCHEMA NAME [,SCHEMA NAME]]
 [SCHEMA_ELEMENT_LIST]

The following is an example:
CREATE SCHEMA USER1
CREATE TABLE TBL1
 (COLUMN1 DATATYPE [NOT NULL],
 COLUMN2 DATATYPE [NOT NULL]...)
CREATE TABLE TBL2

 - 175 -

 (COLUMN1 DATATYPE [NOT NULL],
 COLUMN2 DATATYPE [NOT NULL]...)
GRANT SELECT ON TBL1 TO USER2
GRANT SELECT ON TBL2 TO USER2
[OTHER DDL COMMANDS ...]
The following is the application of the CREATE SCHEMA command in one implementation:
Input
CREATE SCHEMA AUTHORIZATION USER1
CREATE TABLE EMP
 (ID NUMBER NOT NULL,
 NAME VARCHAR2(10) NOT NULL)
CREATE TABLE CUST
 (ID NUMBER NOT NULL,
 NAME VARCHAR2(10) NOT NULL)
GRANT SELECT ON TBL1 TO USER2
GRANT SELECT ON TBL2 TO USER2
/
Output
Schema created.
The AUTHORIZATION keyword is added to the CREATE SCHEMA command. This example was
performed in an Oracle database. This goes to show you, as you have also seen in this book's previous
examples, that vendors' syntax for commands often varies in their implementations.

Note Some implementations may not support the CREATE SCHEMA command.
However, schemas can be implicitly created when a user creates objects. The
CREATE SCHEMA command is simply a single-step method of accomplishing this
task. After objects have been created by a user, the user can grant privileges that
allow access to the user's objects to other users.

Dropping a Schema
A schema can be removed from the database using the DROP SCHEMA statement. There are two options
that must be considered when dropping a schema. First, the RESTRICT option. If RESTRICT is specified, an
error occurs if objects currently exist in the schema. The second option is CASCADE. The CASCADE option
must be used if any objects currently exist in the schema. Remember that when you drop a schema, you
also drop all database objects associated with that schema.

The syntax is as follows:
DROP SCHEMA SCHEMA_NAME { RESTRICT | CASCADE }

Note The absence of objects in a schema is possible because objects, such as tables,
can be dropped using the DROP TABLE command. Some implementations may
have a procedure or command that drops a user, which can also be used to drop
a schema. If the DROP SCHEMA command is not available in your implementation,
you can remove a schema by removing the user that owns the schema objects.

Altering Users
A very important part of managing users is the ability to alter a user's attributes after user creation. Life for
the database administrator would be a lot simpler if personnel with user accounts were never promoted,
never left the company, or if the addition of new employees was minimized. In the real world, high personnel
turnover, as well as users' duties, is a reality and a significant factor in user management. Nearly everyone
changes jobs or job duties, therefore, user privileges in a database must be adjusted to fit a user's needs.

The following is one implementation's example of altering the current state of a user.

For Oracle:

 - 176 -

ALTER USER USER_ID [IDENTIFIED BY PASSWORD | EXTERNALLY |GLOBALLY AS 'CN=USER']
[DEFAULT TABLESPACE TABLESPACE_NAME]
[TEMPORARY TABLESPACE TABLESPACE_NAME]
[QUOTA INTEGER K|M |UNLIMITED ON TABLESPACE_NAME]
[PROFILE PROFILE_NAME]
[PASSWORD EXPIRE]
[ACCOUNT [LOCK |UNLOCK]]
[DEFAULT ROLE ROLE1 [, ROLE2] | ALL
[EXCEPT ROLE1 [, ROLE2 | NONE]]

Many of the user's attributes can be altered in this syntax. Unfortunately, not all implementations
provide a simple command that allows the manipulation of database users. Some implementations also
provide GUI tools that allow users to be created, modified, and removed.

Note You must check your particular implementation for the correct syntax for altering
users. Oracle's ALTER USER syntax is shown here. In most major
implementations, there is a tool used to alter or change a user's roles, privileges,
attributes, and password.

Note A user can change an established password. You must check your particular
implementation for the exact syntax or tool used to reset a password. The ALTER
USER command is typically used in Oracle.

User Sessions
A user database session is the time that begins at database login time and ends when a user logs out.
During the time a user is logged in to the database (a user session), the user can perform various actions,
such as queries and transactions.

An SQL session is initiated when a user connects from the client to the server using the CONNECT
statement. Upon the establishment of the connection and the initiation of the session, any number of
transactions can be started and performed until the connection is disconnected; at that time, the
database user session terminates.

Users can explicitly connect and disconnect from the database, starting and terminating SQL sessions,
using commands such as the following:
CONNECT TO DEFAULT | STRING1 [AS STRING2] [USER STRING3]

DISCONNECT DEFAULT | CURRENT | ALL | STRING

SET CONNECTION DEFAULT | STRING

Note Remember that the syntax varies between implementations. In addition, most
database users do not manually issue the commands to connect or disconnect
from the database. Most users access the database through a vendor-provided or
third-party tool that prompts the user for a username and password, which in turn
connects to the database and initiates a database user session.

User sessions can be—and often are—monitored by the database administrator or other personnel
having interest in user activities. A user session is associated with a particular user account when a
user is monitored. A database user session is ultimately represented as a process on the host operating
system.

Removing User Access
Removing a user from the database or disallowing a user's access can easily be accomplished through a
couple of simple commands. Once again, however, variations among different implementations are
numerous, so you must check your particular implementation for the syntax or tools used to accomplish user
removal or access revocation.

Methods for removing user database access:

 - 177 -

 Change the user's password.
 Drop the user account from the database.
 Revoke appropriate previously granted privileges from the user.

The DROP command can be used in some implementations to drop a user from the database:
DROP USER USER_ID [CASCADE]
The REVOKE command is the counterpart of the GRANT command in many implementations, allowing
privileges that have been granted to a user to be revoked. An example syntax for this command in some
implementations follows:
REVOKE PRIV1 [,PRIV2, ...] FROM USERNAME

Tools Utilized by Database Users

Some people say that you do not need to know SQL to perform database queries. In a sense, they may be
correct; however, knowing SQL definitely helps querying a database, even when using Graphical User
Interface (GUI) tools. Even though GUI tools are good and should be used when available, it is most
beneficial to understand what is happening behind the scenes, so that you can maximize the efficiency of
utilizing these user-friendly tools.

Many GUI tools that aid the database user automatically generate SQL code by navigating through
windows, responding to prompts, and selecting options. There are reporting tools that generate reports.
Forms can be created for users to query, update, insert, or delete data from a database. There are tools
that convert data into graphs and charts. There are database administration tools used to monitor
database performance, and some that allow remote connectivity to a database. Database vendors
provide some of these tools, while others are provided as third-party tools from other vendors.

Summary

All databases have users, whether it be one or thousands. The user is the reason for the database. There
are three basic steps in the management of users. First, the database user account must be created.
Second, privileges must be granted to the user to accommodate the tasks the user must perform within the
database. Finally, a user account must either be removed from the database or certain privileges within the
database must be revoked from a user.

Some of the most common tasks of managing users have been touched on; too much detail is avoided
here, because most databases differ in the user management process. However, it is important to
discuss user management due to its relationship with SQL. Many of the commands used to manage
users have not been defined or discussed in great detail by the ANSI standard, but the concept remains
the same.

Q&A

Q. Is there an SQL standard for adding users to a database?
A.

Some commands and concepts are provided by ANSI, although each
implementation and each company has its own commands, tools, and rules
for creating or adding users to a database.

Q. Can user access be temporarily suspended without removing the user ID
completely from the database?

A.

Yes. User access can temporarily be suspended by simply changing the
user's password or by revoking privileges that allow the user to connect to
the database. The functionality of the user account can be reinstated by
changing and issuing the password to the user, or by granting privileges to
the user that may have been revoked.

Q. Can a user change his or her own password?
A.

Yes, in most major implementations. Upon user creation or addition to the
database, a generic password is usually given to the user and must be
changed as quickly as possible by the user to a password of his or her
choice. After this has been accomplished, even the database administrator
does not know the user's password.

 - 178 -

Workshop
The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. What command is used to establish a session?
2. Which option must be used to drop a schema that still contains database objects?
3. What statement is used to remove a database privilege?
4. What command creates a grouping or collection of tables, views, and privileges?

Exercise
1. Describe or list the steps that allow a new employee database access.

Hour 19: Managing Database Security
Overview

During this hour, you learn the basics of implementing and managing security within a relational database
using SQL and SQL-related commands. Each major implementation differs on syntax with its security
commands, but the overall security for the relational database follows the same basic guidelines discussed in
the ANSI standard. You must check your particular implementation for syntax and any special guidelines for
security.

What Is Database Security?
Database security is the process of simply protecting the data from unauthorized usage. Unauthorized usage
includes data access by database users who should have access to part of the database, but not all parts.
This protection also includes the act of policing against unauthorized connectivity and distribution of
privileges. There are many user levels in a database, from the database creator, individuals responsible for
maintaining the database (such as the DBA), database programmers, and end users. End users, although
individuals with the most limited access, are the users for which the database exists. Each user has a
different level of access to the database and should be limited to the fewest number of privileges needed to
perform his or her particular job.

How Does Security Differ from User Management?
You may be wondering what the difference between user management and database security is. After all,
the last hour discussed user management, which seems to cover security. Although user management and
database security are definitely related, each has its own purpose and work together to achieve a secure
database.

A well-planned and maintained user management program goes hand-in-hand with the overall security
of a database. Users are assigned user accounts and passwords that give them general access to the
database. The user accounts within the database should be stored with information, such as user's
actual name, office and department in which the user works, telephone number or extension, and the
database name to which the user has access. An initial password for the database user account is
assigned by the DBA or security officer and should be changed immediately by the new user.

Security entails more; for instance, if a user no longer requires certain privileges granted to him or her,
those privileges should be revoked. If a user no longer requires access to the database, the user
account should be dropped from the database.
 New Term Generally, user management is the process of creating user accounts, removing user
accounts, and keeping track of users' actions within the database. Database security is going a step
further by granting privileges for specific database access, revoking those privileges from users, and
taking measures to protect other parts of the database, such as the underlying database files.

 - 179 -

Note Because this is an SQL book, not a database book, it focuses on database
privileges. However, you should keep in mind that there are other aspects to
database security, such as the protection of underlying database files, which
holds equal importance with the distribution of database privileges. High-level
database security can become complex and differs immensely between relational
database implementations.

What Are Privileges?

Privileges are authority levels used to access the database itself, access objects within the database,
manipulate data in the database, and perform various administrative functions within the database. Privileges
are issued via the GRANT command and are taken away via the REVOKE command.

Just because a user can connect to a database does not mean that the user can access data within a
database. Access to data within the database is handled through these privileges. There are two types
of privileges:

1. System privileges
2. Object privileges

System Privileges
System privileges are those that allow database users to perform administrative actions within the database,
such as creating a database, dropping a database, creating user accounts, dropping users, dropping and
altering database objects, altering the state of objects, altering the state of the database, and other actions
that could result in serious repercussions if not carefully used.

System privileges vary greatly among the different relational database vendors, so you must check your
particular implementation for all of the available system privileges and their correct usage.

The following are some common system privileges in Sybase:
CREATE DATABASE
CREATE DEFAULT
CREATE PROCEDURE
CREATE RULE
CREATE VIEW
DUMP DATABASE
DUMP TRANSACTION
EXECUTE

The following are some common system privileges in Oracle:
CREATE TABLE
CREATE ANY TABLE
ALTER ANY TABLE
DROP TABLE
CREATE USER
DROP USER
ALTER USER
ALTER DATABASE
ALTER SYSTEM
BACKUP ANY TABLE
SELECT ANY TABLE

Object Privileges
 New Term Object privileges are authority levels on objects, meaning you must have been granted the
appropriate privileges to perform certain operations on database objects. For example, to select data from
another user's table, the user must first grant you access to do so. Object privileges are granted to users in
the database by the object's owner. Remember that this owner is also called the schema owner.

The ANSI standard for privileges includes the following object privileges:
USAGE Authorizes usage of a specific domain
SELECT Allows access to a specific table
INSERT(column_name) Allows data insertion to a specific column of a specified table
INSERT Allows insertion of data into all columns of a specific table

 - 180 -

UPDATE(column_name) Allows a specific column of a specified table to be updated
UPDATE Allows all columns of a specified table to be updated
REFERENCES(column_name) Allows a reference to a specified column of a specified table in
integrity constraints; this privilege is required for all integrity constraints
REFERENCES Allows references to all columns of a specified table

Note The owner of an object has been automatically granted all privileges that relate to
the objects owned. These privileges have also been granted with the GRANT
OPTION. The GRANT OPTION is discussed in the "GRANT OPTION," section later
this hour, which is a nice feature available in some SQL implementations.

These object-level privileges are those privileges that should be used to grant and restrict access to
objects in a schema. These privileges can be used to protect objects in one schema from database
users that have access to another schema in the same database.

There are a variety of object privileges available among different implementations not listed in this
section. The ability to delete data from another user's object is another common object privilege
available in many implementations. Be sure to check your implementation documentation for all of the
available object-level privileges.

Who Grants and Revokes Privileges?
The database administrator (DBA) is usually the one who issues the GRANT and REVOKE commands,
although a security administrator, if one exists, may have the authority to do so. The authority on what to
GRANT or REVOKE would come from management and would hopefully be in writing.

The owner of an object must grant privileges to other users in the database on the object. Even the DBA
cannot grant database users privileges on objects that do not belong to the DBA, although there are
ways to work around that.

Controlling User Access

User access is primarily controlled by a user account and password, but that is not enough to access the
database in most major implementations. The creation of a user account is only the first step in allowing
access to the database, as well as controlling that access.

After the user account has been created, the database administrator, security officer, or designated
individual must be able to assign appropriate system-level privileges to a user for that user to be
allowed to perform actual functions within the database, such as creating tables or selecting from tables.
What good is it to connect to a database if you cannot do anything? Furthermore, the schema owner
usually needs to grant database users access to objects in the schema so that the user can do his or
her job.

There are two commands in SQL that allow database access control involving the assignment of
privileges and the revocation of privileges. The following are the two commands used to distribute both
system and object privileges in a relational database:

GRANT
REVOKE
The GRANT Command

The GRANT command is used to grant both system-level and object-level privileges to an existing database
user account.

The syntax is as follows:
GRANT PRIVILEGE1 [, PRIVILEGE2][ON OBJECT]
TO USERNAME [WITH GRANT OPTION | ADMIN OPTION]

Granting one privilege to a user is as follows:
Input
GRANT SELECT ON EMPLOYEE_TBL TO USER1;
Output
Grant succeeded.

 - 181 -

Granting multiple privileges to a user is as follows:
Input
GRANT SELECT, INSERT ON EMPLOYEE_TBL TO USER1;
Output
Grant succeeded.

Notice that when granting multiple privileges to a user in a single statement, each privilege is separated
by a comma.

Granting privileges to multiple users is as follows:
Input
GRANT SELECT, INSERT ON EMPLOYEE_TBL TO USER1, USER2;
Output
Grant succeeded.

Note Notice the phrase Grant succeeded denoting the successful completion of
each grant statement. This is the feedback that you receive when you issue these
statements in the implementation used for the book examples (Oracle). Most
implementations have some sort of feedback, although the phrase used may
vary.

GRANT OPTION
The GRANT OPTION is a very powerful GRANT command option. When an object's owner grants privileges
on an object to another user with the GRANT OPTION, the new user can also grant privileges on that object
to other users, even though the user does not actually own the object. An example follows:

Input
GRANT SELECT ON EMPLOYEE_TBL TO USER1 WITH GRANT OPTION;
Output
Grant succeeded.
ADMIN OPTION

The ADMIN OPTION is similar to the GRANT OPTION in that the user that has been granted the privileges
also inherits the ability to grant those privileges to another user. The GRANT OPTION is used for object-level
privileges, whereas the ADMIN OPTION is used for system-level privileges. When a user grants system
privileges to another user with the ADMIN OPTION, the new user can also grant the system-level privileges
to any other user. An example follows:

Input
GRANT CREATE TABLE TO USER1 WITH ADMIN OPTION;
Output
Grant succeeded.

Note When a user that has granted privileges using either the GRANT OPTION or the
ADMIN OPTION has been dropped from the database, the privileges that the user
granted are disassociated with the users to which the privileges were granted.

The REVOKE Command
The REVOKE command removes privileges that have been granted to database users. The REVOKE
command has two options—RESTRICT and CASCADE. When the RESTRICT option is used, REVOKE
succeeds only if the privileges specified explicitly in the REVOKE statement leave no other users with
abandoned privileges. The CASCADE option revokes any privileges that would otherwise be left with other
users. In other words, if the owner of an object granted USER1 privileges with the GRANT OPTION, USER1
granted USER2 privileges with the GRANT OPTION, and then the owner revokes USER1's privileges, the
CASCADE also removes the privileges from USER2.

 New Term Abandoned privileges are privileges that are left with a user who was granted privileges with
the GRANT OPTION from a user who has been dropped from the database or had his/her privileges
revoked.

The syntax is as follows:
REVOKE PRIVILEGE1 [, PRIVILEGE2] [GRANT OPTION FOR] ON OBJECT
FROM USER { RESTRICT | CASCADE }

The following is an example:

 - 182 -

Input
REVOKE INSERT ON EMPLOYEE_TBL FROM USER1;
Output
Revoke succeeded.

Controlling Access on Individual Columns
Instead of granting object privileges (INSERT, UPDATE, or DELETE) on a table as a whole, you can grant
privileges on specific columns in the table to restrict user access, as shown in the following example
example:

Input
GRANT UPDATE (NAME) ON EMPLOYEES TO PUBLIC;
Output
Grant succeeded.
The PUBLIC Database Account

The PUBLIC database user account is a database account that represents all users in the database. All
users are part of the public account. If a privilege is granted to the PUBLIC account, all database users have
the privilege. Likewise, if a privilege is revoked from the PUBLIC account, the privilege is revoked from all
database users, unless that privilege was explicitly granted to a specific user. The following is an example:

Input
GRANT SELECT ON EMPLOYEE_TBL TO PUBLIC;
Output
Grant succeeded.

Warning Extreme caution should be taken when granting privileges to PUBLIC; all
database users acquire the privileges granted.

Groups of Privileges
Some implementations have groups of privileges in the database. These groups of permissions are referred
to with different names. Having a group of privileges allows simplicity for granting and revoking common
privileges to and from users. For example, if a group consists of ten privileges, the group can be granted to a
user instead of all ten privileges.

 New Term SQLBase has groups of privileges called authority levels, whereas these groups of
privileges in Oracle are called roles. SQLBase and Oracle both include the following groups of privileges
with their implementations:

CONNECT
RESOURCE
DBA
The CONNECT group allows a user to connect to the database and perform operations on any database
objects to which the user has access.
The RESOURCE group allows a user to create objects, drop objects he or she owns, grant privileges to
objects he or she owns, and so on.
The DBA group allows a user to perform any function within the database. The user can access any
database object and perform any operation with this group.

An example for granting a group of privileges to a user follows:
Input
GRANT DBA TO USER1;
Output
Grant succeeded.

Note Each implementation differs on the use of groups of database privileges. If
available, this feature should be used for ease of database security
administration.

Controlling Privileges Through Roles

 New Term A role is an object created in the database that contains group-like privileges. Roles can reduce
security maintenance by not having to grant explicit privileges directly to a user. Group privilege

 - 183 -

management is much easier to handle with roles. A role's privileges can be changed, and such a change is
transparent to the user.

If a user needs SELECT and UPDATE table privileges on a table at a specified time within an application,
a role with those privileges can temporarily be assigned until the transaction is complete.
When a role is first created, it has no real value other than being a role within a database. It can be
granted to users or other roles. Let's say that a schema named APP01 grants the SELECT table
privilege to the RECORDS_CLERK role on the EMPLOYEE_PAY table. Any user or role granted the
RECORDS_CLERK role now would have SELECT privileges on the EMPLOYEE_PAY table.
Likewise, if APP01 revoked the SELECT table privilege from the RECORDS_CLERK role on the
EMPLOYEE_PAY table, any user or role granted the RECORDS_CLERK role would no longer have
SELECT privileges on that table.
The CREATE ROLE Statement

A role is created with the CREATE ROLE statement.
CREATE ROLE role_name;

Granting privileges to roles is the same as granting privileges to a user. Study the following example.
Input
CREATE ROLE RECORDS_CLERK;
Output
Role created.
Input
GRANT SELECT, INSERT, UPDATE, DELETE ON EMPLOYEE_PAY TO RECORDS_CLERK;
Output
Grant succeeded.
Input
GRANT RECORDS_CLERK TO USER1;
Output
Grant succeeded.
The DROP ROLE Statement

A role is dropped using the DROP_ROLE statement.
DROP ROLE role_name;

The following is an example:
Input
DROP ROLE RECORDS_CLERK;
Output
Role dropped.
The SET ROLE Statement

A role can be set for a user SQL session using the SET_ROLE statement.
SET ROLE role_name;

The following is an example:
Input
SET ROLE RECORDS_CLERK;
Output
Role set.

You can set more than one role at once:
Input
SET ROLE RECORDS_CLERK, ROLE2, ROLE3;
Output
Role set.

In some implementations, such as Oracle, all roles granted to a user are automatically default roles,
which means the roles will be set and available to the user as soon as the user logs in to the database.

 - 184 -

Summary

You were shown the basics on implementing security in an SQL database or a relational database. You
learned the basics of managing database users. The first step in implementing security at the database level
for users is to create the user; after the user has been created, the user must be assigned certain privileges
that allow the user access to specific parts of the database, and now ANSI allows the use of roles as
discussed during this Hour. Privileges can be granted to users or roles. There are two types of privileges:
system and object privileges.

System privileges are those that allow the user to perform various different tasks within the database,
such as actually connecting to the database, creating tables, creating users, altering the state of the
database, and so on. Object privileges are those that allow a user access to specific objects within the
database, such as the ability to select data or manipulate data in a specific table.
There are two commands in SQL that allow a user to grant and revoke privileges to and from other
users or roles in the database: GRANT and REVOKE. These two commands are used to control the
overall administration of privileges in the database. Although there are many other considerations for
implementing security in a relational database, the basics that relate to the language of SQL were
discussed during this hour.

Q&A

Q. If a user forgets his or her password, what should the user do to gain access
to the database again?

A.

The user should go to his or her immediate management or an available
help desk. A help desk should be able to reset a user's password. If not, the
DBA or security officer can reset the password. The user should change the
password to a password of his or her choosing as soon as the password is
reset and the user is notified.

Q. What could I do if I wanted to grant CONNECT to a user, but the user does
not need all the privileges that are assigned to the connect role?

A.

You would simply not grant CONNECT, but only the privileges required.
Should you ever grant CONNECT and the user no longer needs all the
privileges that go with it, simply revoke CONNECT from the user and grant the
specific privileges required.

Q. Why is it so important for the new user to change the password when
received from whomever created the new user?

A.

An initial password is assigned upon creation of the user ID. No one, not
even the DBA or management, should know a user's password. The
password should be kept a secret at all times to prevent another user from
logging on to the database under another user's account.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. What option must a user have to grant another user privileges on an object not

owned by the user?
2. When privileges are granted to PUBLIC, do all database users acquire the

privileges, or just a listing of specified users?
3. What privilege is required to look at data in a specific table?
4. What type of privilege is SELECT?

 - 185 -

Exercises
1. Write a statement to grant select access on a table called EMPLOYEE_TBL, which

you own, to a user ID, RPLEW. It should allow RPLEW to grant privileges to another
user on the same table.

2. Write the statement that revokes the connect role from both of the users in
Exercise 1.

3. Write the statement that allows RPLEW to select, insert, and update the
EMPLOYEE_TBL table.

Part VII: Summarized Data Structures
Chapter List

Hour 20: Creating and Using Views and Synonyms
Hour 21: Working with the System Catalog

Hour 20: Creating and Using Views and Synonyms
Overview

During this hour, you learn about performance, as well as how to create and drop views, how to use views
for security, and how to provide simplicity in data retrieval for end users and reports. You also read a
discussion on synonyms.

What Is a View?
A view is a virtual table. That is, a view looks like a table and acts like a table as far as a user is concerned.
A view is actually a composition of a table in the form of a predefined query. For example, a view can be
created from the EMPLOYEE_TBL table that contains only the employee's name and address, instead of all
columns in the EMPLOYEE_TBL table. A view can contain all rows of a table or select rows from a table. A
view can be created from one or many tables.

 New Term A view is a predefined query that is stored in the database, has the appearance of an
ordinary table, and is accessed like a table, but does not require physical storage.
When a view is created, a SELECT statement is actually run against the database, which defines the
view. The SELECT statement used to define the view may simply contain column names from the table,
or can be more explicitly written using various functions and calculations to manipulate or summarize
the data that the user sees. Study the illustration of a view in Figure 20.1.

Figure 20.1: The view.

A view is considered a database object, although the view takes up no storage space on its own. The
main difference between a view and a table is that data in a table consumes physical storage, whereas
a view does not require physical storage because it is actually referring to data from a table.

A view is used in the same manner a table is used in the database, meaning that data can be selected
from a view as it is from a table. Data can also be manipulated in a view, although there are some
restrictions. The following sections discuss some common uses for views and how views are stored in
the database.

Warning If a table that was used to create a view is dropped, the view becomes
inaccessible. You receive an error when trying to query against the view.

 - 186 -

Views Can Be Utilized as a Form of Security
Views can be utilized as a form of security in the database. Say you have a table called EMPLOYEE_TBL.
The EMPLOYEE_TBL includes employee names, addresses, phone numbers, emergency contacts,
department, position, and salary or hourly pay. You have some temporary help come in to write some
reports; you need a report of employees' names, addresses, and phone numbers. If you give access to the
EMPLOYEE_TBL to the temporary help, they can see how much each of your employees receives in
compensation—you do not want this to happen. To prevent that, you have created a view containing only the
required information: employee name, address, and phone numbers. The temporary help can then be given
access to the view to write the report without having access to the compensation columns in the table.

Tip Views can be used to restrict user access to particular columns in a table or to rows
in a table that meet specific conditions as defined in the WHERE clause of the view
definition.

Views Can Be Utilized to Maintain Summarized Data
If you have a summarized data report in which the data in the table or tables is updated often and the report
is created often, a view with summarized data may be an excellent choice.

For example, suppose that you have a table containing information about individuals, such as their city
of residence, their sex, their salary, and their age. You could create a view based on the table that
shows summarized figures for individuals for each city, such as the average age, average salary, total
number of males, and total number of females. After the view is created, to retrieve this information from
the base table(s), you can simply query the view instead of composing a SELECT statement that may, in
some cases, turn out to be complex.
The only difference between the syntax for creating a view with summarized data and creating a view
from a single or multiple tables is the use of aggregate functions. Review Hour 9, "Summarizing Data
Results from a Query," for the use of aggregate functions.

How Is a View Stored?
A view is stored in memory only. A view takes up no storage space—as do other database objects—other
than the space required to store the view definition itself. A view is owned by the view's creator or the
schema owner. The view owner automatically has all applicable privileges on that view and can grant
privileges on the view to other users, as with tables. The GRANT command's GRANT OPTION privilege works
the same as on a table. See Hour 19, "Managing Database Security," for more information.

Creating Views
Views are created using the CREATE VIEW statement. Views can be created from a single table, multiple
tables, or another view. To create a view, a user must have the appropriate system privilege according to the
specific implementation.

The basic CREATE VIEW syntax is as follows:
CREATE [RECURSIVE]VIEW VIEW_NAME
[COLUMN NAME [,COLUMN NAME]]
[OF UDT NAME [UNDER TABLE NAME]
[REF IS COLUMN NAME SYSTEM GENERATED |USER GENERATED | DERIVED]
[COLUMN NAME WITH OPTIONS SCOPE TABLE NAME]]
 AS
{SELECT STATEMENT}
[WITH [CASCADED | LOCAL] CHECK OPTION]
The following subsections explore different methods for creating views using the CREATE VIEW
statement.

Note There is no provision for an ALTER VIEW statement in ANSI SQL.

Creating a View from a Single Table
A view can be created from a single table. The WITH CHECK OPTION is discussed later this hour.

The syntax is as follows:

 - 187 -

CREATE VIEW VIEW_NAME AS
SELECT * | COLUMN1 [, COLUMN2]
FROM TABLE_NAME
[WHERE EXPRESSION1 [, EXPRESSION2]]
[WITH CHECK OPTION]
[GROUP BY]

The simplest form for creating a view is one based on the entire contents of a single table, as in the
following example:
Input
CREAT VIEW CUSTOMERS AS
SELECT *
FROM CUSTOMER_TBL;
Output
View created.

The next example narrows the contents for a view by selecting only specified columns from the base
table:
Input
CREATE VIEW EMP_VIEW AS
SELECT LAST_NAME, FIRST_NAME, MIDDLE_NAME
FROM EMPLOYEE_TBL;
Output
View Created.
Following is an example of how columns from the BASE TABLE can be combined or manipulated to
form a column in a view. The view column is titled NAME by using an alias in the SELECT clause.
Input
CREATE VIEW NAMES AS
SELECT LAST_NAME || ', ' ||FIRST_NAME || ' ' || MIDDLE_NAME NAME
FROM EMPLOYEE_TBL;
Output
View created.
Now you select all data from the view that you created, called NAMES.
Input
SELECT *
FROM NAMES;
NAME
Output

STEPHENS, TINA D
PLEW, LINDA C
GLASS, BRANDON S
GLASS, JACOB
WALLACE, MARIAH
SPURGEON, TIFFANY
6 rows selected.

The following example shows how to create a view with summarized data from one or more underlying
tables:
Input
CREATE VIEW CITY_PAY AS

 - 188 -

SELECT E.CITY, AVG(P PAY_RATE) AVG_PAY
FROM EMPLOYEE_TBL E,
 EMPLOTEE_PAY_TBL P
WHERE E.EMP_ID = P.EMP_ID
GROUP BY E.CITY;
Output
View created.

Now, if you select from your summarized view:
Input
SELECT *
FROM CITY_PAY;
Output
CITY AVG_PAY
--------------- -------
GREENWOOD
INDIANAPOLIS 13.33333
WHITELAND

3 rows selected.
By summarizing a view, SELECTs that may occur in the future are simplified against the underlying table
of the view.

Creating a View from Multiple Tables
A view can be created from multiple tables by using a JOIN the SELECT statement. WITH CHECK OPTION
is discussed later this hour. The syntax is as follows:

CREATE VIEW VIEW_NAME AS
SELECT * | COLUMN1 [, COLUMN2]
FROM TABLE_NAME1, TABLE_NAME2 [, TABLE_NAME3]
WHERE TABLE_NAME1 = TABLE_NAME2
[AND TABLE_NAME1 = TABLE_NAME 3]
[EXPRESSION1][, EXPRESSION2]
[WITH CHECK OPTION]
[GROUP BY]

The following is an example of creating a view from multiple tables:
Input
CREATE VIEW EMPLOYEE_SUMMARY AS
SELECT E.EMP_ID, E.LAST_NAME, P.POSITION, P.DATE_HIRE, P.PAY_RATE
FROM EMPLOYEE_TBL E,
 EMPLOYEE PAY_TBL P
WHERE E.EMP_ID = P.EMP_ID;
Output
View created.
Remember that when selecting data from multiple tables, the tables must be joined by common keys in
the WHERE clause. A view is nothing more than a SELECT statement itself; therefore, tables are joined in
a view definition the same as they are in a regular SELECT statement. Recall the use of table aliases to
simplify the readability of a multiple-table query.

 - 189 -

Creating a View from a View
A view can be created from another view using the following format:

CREATE VIEW2 AS
SELECT * FROM VIEW1

Do Not Create Views too Deep
A view can be created from a view many layers deep (a view of a view of a view, and so on). How deep you
can go is implementation-specific. The only problem with creating views based on other views is their
manageability. For example, suppose that you create VIEW2 based on VIEW1 and then create VIEW3
based on VIEW2. If VIEW1 is dropped, VIEW2 and VIEW3 are no good. The underlying information that
supports these views no longer exists. Therefore, always maintain a good understanding of the views in the
database and on which other objects those views rely. See Figure 20.2 on view dependency.

Figure 20.2: View dependencies.

Note If a view is as easy and efficient to create from the base table as from another
view, preference should go to the view being created from the BASE TABLE.

Figure 20.2 shows the relationship of views that are dependent not only on tables, but on other views.
VIEW1 and VIEW2 are dependent on the TABLE. VIEW3 is dependent on VIEW1. VIEW4 is dependent
on both VIEW1 and VIEW2. VIEW5 is dependent on VIEW2. Based on these relationships, the following
can be concluded:

 If VIEW1 is dropped, VIEW3 and VIEW4 are invalid.
 If VIEW2 is dropped, VIEW4 and VIEW5 are invalid.
 If the TABLE is dropped, none of the views are valid.

The WITH CHECK OPTION
The WITH CHECK OPTION is a CREATE VIEW statement option. The purpose of the WITH CHECK OPTION
is to ensure that all UPDATE and INSERTs satisfy the condition(s) in the view definition. If they do not satisfy
the condition(s), the UPDATE or INSERT returns an error. The WITH CHECK OPTION has two options of its
own: CASCADED and LOCAL. The WITH CHECK OPTION actually enforces referential integrity by checking
the view's definition to see that it is not violated.

The following is an example of creating a view with the WITH CHECK OPTION:
Input
CREATE VIEW EMPLOYEE_PAGERS AS
SELECT LAST_NAME, FIRST_NAME, PAGER
FROM EMPLOYEE_TBL
WHERE PAGER IS NOT NULL
WITH CHECK OPTION;
Output
View created.
The WITH CHECK OPTION in this case should deny the entry of any NULL values in the view's PAGER
column, because the view is defined by data that does not have a NULL value in the PAGER column.
Try to insert a NULL value in the PAGER column:
Input
INSERT INTO EMPLOYEE PAGERS
VALUES ('SMITH','JOHN',NULL);
Output
insert into employee_pagers

 - 190 -

 *
ERROR at line 1:
ORA-01400: mandatory (NOT NULL) column is missing or NULL during insert
The WITH CHECK OPTION worked.
CASCADED Versus LOCAL

There are two options when choosing to use the WITH CHECK OPTION during creation of a view from a
view: CASCADED and LOCAL. CASCADED is the default, assumed if neither is specified. The CASCADED
option checks all underlying views, all integrity constraints during an update for the BASE TABLE, and
against defining conditions in the second view. The LOCAL option is used to check only integrity constraints
against both views and the defining conditions in the second view, not the underlying base table. Therefore,
it is safer to create views with the CASCADED option because the base table's referential integrity is
preserved.

Updating a View
A view can be updated under certain conditions:

 The view must not involve joins.
 The view must not contain a GROUP BY clause.
 The view cannot contain any reference to the pseudocolumn ROWNUM.
 The view cannot contain any group functions.
 The DISTINCT clause cannot be used.
 The WHERE clause cannot include a nested table expression that includes a

reference to the same table as referenced in the FROM clause.
Review Hour 14, "Using Subqueries to Define Unknown Data," for the UPDATE command's syntax.

Inserting Rows into a View
Rows of data can be inserted into a view. The same rules that apply to the UPDATE command also apply to
the INSERT command. Review Hour 14 for the syntax of the INSERT command.

Deleting Rows from a View
Rows of data can be deleted from a view. The same rules that apply to the UPDATE and INSERT commands
apply to the DELETE command. Review Hour 14 for the syntax of the DELETE command.

Joining Views with Tables and Other Views
A view can be joined with tables and with other views. The same principles apply to joining views with tables
and other views that apply to joining tables to other tables. Review Hour 13, "Joining Tables in Queries," on
the joining of tables.

Creating a Table from a View
A table can be created from a view, just as a table can be created from another table (or a view from another
view).

The syntax is as follows:
CREATE TABLE TABLE_NAME AS
SELECT {* | COLUMN1 [, COLUMN2]
FROM VIEW_NAME
[WHERE CONDITION1 [, CONDITION2]
[ORDER BY]

First, create a view based on two tables:
Input
CREATE VIEW ACTIVE_CUSTOMERS AS
SELECT C.*

 - 191 -

FROM CUSTOMER_TBL C,
 ORDERS_TBL O
WHERE C.CUST_ID = O.CUST_ID;
Output
View created.

Next, create a table based on the previously created view:
Input
CREATE TABLE SUCTOMER_ROSTER_TBL AS
SELECT CUST_ID, CUST_NAME
FROM ACTIVE_CUSTOMERS;
Output
Table created.

Finally, select data from the table, the same as any other table:
Input
SELECT *
FROM CUSTOMER_ROSTER_TBL;
Output
CUST_ID CUST_NAME
---------- -------------------
232 LESLIE GLEASON
12 MARYS GIFT SHOP
43 SCHYLERS NOVELTIES
090 WENDY WOLF
287 GAVINS PLACE
432 SCOTTYS MARKET
6 rows selected.

Note Remember that the main difference between a table and a view is that a table
contains actual data and consumes physical storage, whereas a view contains no
data and requires no storage other than to store the view definition (the query).

Views and the ORDER BY Clause
The ORDER BY clause cannot be used in the CREATE VIEW statement; however, the GROUP BY clause
when used in the CREATE VIEW statement has the same effect as an ORDER BY clause.

Note Using the ORDER BY clause in the SELECT statement that is querying the view is
better and simpler than using the GROUP BY clause in the CREATE VIEW
statement.

The following is an example of a GROUP BY clause in a CREATE VIEW statement:
Input
CREATE VIEW NAMES2 AS
SELECT LAST_NAME || ', ' || FIRST_NAME || ' ' ||MIDDLE_NAME NAME
FROM EMPLOYEE_TBL
GROUP BY LAST_NAME || ', ' || FIRST_NAME || ' ' || MIDDLE_NAME;
Output
View created.
If you select all data from the view, the data is in alphabetical order (because you grouped by NAME).
Input
SELECT *
FROM NAMES2;
NAME
Output

 - 192 -

GLASS, BRANDON S
GLASS, JACOB
PLEW, LINDA C
SPURGEON, TIFFANY
STEPHENS, TINA D
WALLACE, MARIAH
6 rows selected.

Dropping a View

The DROP VIEW command is used to drop a view from the database. There are two options to the DROP
VIEW command: RESTRICT and CASCADE. If a view is dropped with the RESTRICT option, when any other
views are referenced in a constraint, the DROP VIEW errs. If the CASCADE option is used and another view or
constraint is referenced, the DROP VIEW succeeds and the underlying view or constraint is also dropped. An
example follows:

Input
DROP VIEW NAMES2;
Output
View dropped.

What Is a Synonym?

 New Term A synonym is merely another name for a table or a view. Synonyms are usually created so that a
user can avoid having to qualify another user's table or view to access the table or view. Synonyms can be
created as PUBLIC or PRIVATE. A PUBLIC synonym can be used by any user of the database; a PRIVATE
synonym can be used only by the owner and any users that have been granted privileges.

Note Synonyms are used by several major implementations. Synonyms are not ANSI
SQL standard; however, because synonyms are used by major implementations,
it is best to discuss them briefly. You must check your particular implementation
for the exact use of synonyms, if available.

Managing Synonyms
Synonyms are either managed by the database administrator (or another designated individual) or by
individual users. Because there are two types of synonyms, PUBLIC and PRIVATE, different system-level
privileges may be required to create one or the other. All users can generally create a PRIVATE synonym.
Typically, only a DBA or privileged database user can create a PUBLIC synonym. Refer to your specific
implementation for required privileges when creating synonyms.

Creating Synonyms
The general syntax to create a synonym is as follows:

CREATE [PUBLIC|PRIVATE] SYNONYM SYNONYM_NAME FOR TABLE|VIEW
You create a synonym called CUST, short for CUSTOMER_TBL, in the following example. This frees you
from having to spell out the full table name.
Input
CREATE SYNONYM CUST FOR CUSTOMER_TBL;
Output
Synonym created.
Input
SELECT CUST_NAME
FROM CUST;
Output
CUST_NAME

 - 193 -

LESLIE GLEASON
NANCY BUNKER
ANGELA DOBKO
WENDY WOLF
MARYS GIFT SHOP
SCOTTYS MARKET
JASONS AND DALLAS GOODIES
MORGANS CANDIES AND TREATS
SCHYLERS NOVELTIES
GAVINS PLACE
HOLLYS GAMEARAMA
HEATHERS FEATHERS AND THINGS
RAGANS HOBBIES INC
ANDYS CANDIES
RYANS STUFF
15 rows selected.

It is also a common practice for a table owner to create a synonym for the table to which you have been
granted access so that you do not have to qualify the table name by the name of the owner:
Input
CREATE SYNONYM PRODUCTS_TBL FOR USER1.PRODUCTS_TBL;
Output
Synonym created.

Dropping Synonyms
Dropping synonyms is like dropping most any database object. The general syntax to drop a synonym is as
follows:

DROP [PUBLIC|PRIVATE] SYNONYM SYNONYM_NAME

The following is an example:
Input
DROP SYNONYM CUST;
Output
Synonym dropped.

Summary

Views and synonyms, two important features in SQL, were discussed this hour. In many cases, these things
are not used when they could aid in the overall functionality of relational database users. Views were defined
as virtual tables—objects that look and act like tables, but do not take physical space like tables. Views are
actually defined by queries against tables and possible other views in the database. Views are typically used
to restrict data that a user sees and to simplify and summarize data. Views can be created from views, but
care must be taken not to embed views too deeply, to avoid losing control over their management. There are
various options when creating views, some implementation-specific.

Synonyms, objects in the database that represent other objects, were also discussed. Synonyms are
used to simplify the name of another object in the database, either by creating a synonym with a short
name for an object with a long name or by creating a synonym on an object owned by another user to
which you have access. There are two types of synonyms: PUBLIC and PRIVATE. A PUBLIC synonym
is one that is accessible to all database users, whereas a PRIVATE synonym is accessible to a single
user. A DBA typically creates a PUBLIC synonym, while each individual user normally creates his or her
own PRIVATE synonyms.

 - 194 -

Q&A
Q. How can a view contain data but take no storage space?
A.

A view does not contain data. A view is a virtual table or a stored query. The
only space required for a view is for the actual view creation statement,
called the view definition.

Q. What happens to the view if a table from which a view was created is
dropped?

A. The view is invalid because the underlying data for the view no longer
exists.

Q. What are limits on naming the synonym when creating synonyms?
A.

This is implementation-specific. However, the naming convention for
synonyms in most major implementations follows the same rules that apply
to the tables and other objects in the database.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. Can a row of data be deleted from a view that was created from multiple tables?
2. When creating a table, the owner is automatically granted the appropriate

privileges on that table. Is this true when creating a view?
3. What clause is used to order data when creating a view?
4. What option can be used when creating a view from a view, to check integrity

constraints?
5. You try to drop a view and receive an error because there are one or more

underlying views. What must you do to drop the view?

Exercises
1. Write a statement to create a view based on the total contents of the

EMPLOYEE_TBL table.
2. Write a statement that creates a summarized view containing the average pay

rate and average salary for each city in the EMPLOYEE_TBL table.
3. Write statements that drop the two views that you created in Exercises 1 and 2.

Hour 21: Working with the System Catalog
Overview

During this hour, you learn about the system catalog, commonly referred to as the data dictionary in some
relational database implementations. By the end of this hour, you will understand the purpose and contents
of the system catalog and will be able to query the system catalog to find information about the database
based on commands that you have learned in previous hours. Each major implementation has some form of
a system catalog that stores information about the database itself. This hour shows examples of the
elements contained in a few different system catalogs.

How Is the System Catalog Created?
The system catalog is either created automatically with the creation of the database, or by the database
administrator immediately following the creation of the database. For example, a set of predefined, vendor-
provided SQL scripts in Oracle are executed, which builds all the database tables and views in the system
catalog that are accessible to a database user. The system catalog tables and views are system-owned and
not specific to any one schema. In Oracle, for example, the system catalog owner is a user account called
SYS, which has full authority in the database. In Sybase, the system catalog for the SQL server is located in
the MASTER database.

 - 195 -

What Is Contained in the System Catalog?

The system catalog contains a variety of information accessible to many users and is sometimes used for
different specific purposes by each of those users.

The system catalog contains information such as the following:
 User accounts and default settings
 Privileges and other security information
 Performance statistics
 Object sizing
 Object growth
 Table structure and storage
 Index structure and storage
 Information on other database objects, such as views, synonyms, triggers, and stored

procedures
 Table constraints and referential integrity information
 User sessions
 Auditing information
 Internal database settings
 Locations of database files

The system catalog is maintained by the database server. For example, when a table is created, the
database server inserts the data into the appropriate system catalog table or view. When a table's
structure is modified, appropriate objects in the data dictionary are also updated. The following sections
describe, by category, the types of data that are contained in the system catalog.

User Data
All information about individual users is stored in the system catalog: the system and object privileges a user
has been granted, the objects a user owns, and the objects not owned by the user to which the user has
access. The user tables or views are accessible to the individual to query for information. See your
implementation documentation on the system catalog objects.

Security Information
The system catalog also stores security information, such as user identifications, encrypted passwords, and
various privileges and groups of privileges database users utilize to access the data. Audit tables exist in
some implementations for tracking actions that occur within the database, as well as by whom, when, and so
on. Database user sessions also can be closely monitored through the use of the system catalog in many
implementations.

Database Design Information
The system catalog contains information regarding the actual database. That information includes the
database's creation date, name, objects sizing, size and location of data files, referential integrity information,
indexes that exist in the database, and specific column information and column attributes for each table in
the database.

Performance Statistics
Performance statistics are typically maintained in the system catalog as well. Performance statistics include
information concerning the performance of SQL statements, both elapsed time and the execution method of
a SQL statement taken by the optimizer. Other information for performance concerns memory allocation and
usage, free space in the database, and information that allows table and index fragmentation to be controlled
within the database. This performance information can be used to properly tune the database, rearrange
SQL queries, or redesign methods of access to data to achieve better overall performance and SQL query
response time.

 - 196 -

Examples of System Catalog Tables by Implementation
Each implementation has several tables and views that compose the system catalog, some of which are
categorized by user level, system level, and DBA level. For your particular implementation, you should query
these tables and read your implementation's documentation for more information on system catalog tables.
See Table 21.1 for a few examples of five major implementations.
TABLE 21.1: Major Implementations' System Catalog Objects

Microsoft SQL Server

Table Name Description
SYSUSERS Information on database users
SYSSEGMENTS Information on all database segments
SYSINDEXES Information on all indexes
SYSCONSTRAINTS Information on all constraints

dBase

Table Name Description
SYSVIEWS Information on all views
SYSTABLS Information on all tables
SYSIDXS Information on all indexes
SYSCOLS Information on columns of tables

Microsoft Access

Table Name Description
MSysColumns Information on columns in tables
MSysIndexes Information on indexes in tables
MSysMacros Information on macros created
MSysObjects Information on all database objects
MSysQueries Information on queries created
MSysRelationships Information on table relationships

Sybase

Table Name Description
SYSMESSAGES Lists all server error messages
SYSKEYS Primary and foreign key information
SYSTABLES Information on all tables and views
SYSVIEWS Text of all views
SYSCOLUMNS Information on table columns
SYSINDEXES Information on indexes
SYSOBJECTS Information on tables, triggers, views, and the like
SYSDATABASES Information on all databases on server
SYSPROCEDURES Information on views, triggers, and stored procedures

Oracle

Table Name Description

 - 197 -

ALL_TABLES Information on tables accessible by a user
USER_TABLES Information on tables owned by a user
DBA_TABLES Information on all tables in the database
DBA_SEGMENTS Information about segment storage
DBA_INDEXES Information on all indexes
DBA_USERS Information on all users of the database
DBA_ROLE_PRIVS Information about roles granted
DBA_ROLES Information about roles in the database
DBA_SYS_PRIVS Information about system privileges granted
DBA_FREE_SPACE Information about database free space
V$DATABASE Information about the creation of the database
V$SESSION Information on current sessions

Note These are just a few of the

system catalog objects
from a few various
relational database
implementations. Many of
the system catalog objects
that are similar between
implementations are shown
here, but this hour strives
to provide some variety.
Overall, each
implementation is very
specific to the organization
of the system catalog's
contents.

Querying the System Catalog

The system catalog tables or views are queried as any other table or view in the database using SQL. A user
can usually query the user-related tables, but may be denied access to various system tables that can be
accessed only by privileged database user accounts, such as the database administrator.

You create an SQL query to retrieve data from the system catalog just as you create a query to access
any other table in the database.
For example, the following query returns all rows of data from the Sybase table SYSTABLES:
SELECT * FROM SYSTABLES
GO

The following section displays a few examples of querying system catalog tables and some of the
information that you may stumble across.

Examples of System Catalog Queries
The following examples use Oracle's system catalog. Oracle is chosen for no particular reason other than
that is the implementation with which this book's authors are most familiar.

The following query lists all user accounts in the database:
Input
SELECT USERNAME
FROM ALL_USERS;

 - 198 -

Output
USERNAME

SYS
SYSTEM
RYAN
SCOTT
DEMO
RON
USER1
USER2
8 rows selected.

The following query lists all tables owned by a user:
Input
SELECT TABLE_NAME
FROM USER_TABLES;
Output
TABLE_NAME

CANDY_TBL
CUSTOMER_TBL
EMPLOYEE_PAY_TBL
EMPLOYEE_TBL
PRODUCTS_TBL
ORDERS_TBL
6 rows selected.
The next query returns all the system privileges that have been granted to the database user BRANDON:
Input
SELECT GRANTEE, PRIVILEGE
FROM SYS.DBA_SYS_PRIVS
WHERE GRANTEE = 'BRANDON';
Output
GRANTEE PRIVILEGE
---------------------- --------------------
BRANDON ALTER ANY TABLE
BRANDON ALTER USER
BRANDON CREATE USER
BRANDON DROP ANY TABLE
BRANDON SELECT ANY TABLE
BRANDON UNLIMITED TABLESPACE
6 rows selected.

The following is an example from MS Access:
Input
SELECT NAME
FROM MSYSOBJECTS

 - 199 -

WHERE NAME = 'MSYSOBJECTS'
Output
NAME

MSYSOBJECTS

Note The examples shown in this section are a drop in the bucket compared to the
information that you can retrieve from any system catalog. Please refer to your
implementation documentation for specific system catalog tables and columns
within those available tables.

Updating System Catalog Objects

The system catalog is used only for query operations—even when being used by the database administrator.
Updates to the system catalog are accomplished automatically by the database server. For example, a table
is created in the database when a CREATE TABLE statement is issued by a database user. The database
server then places the DDL that was used to create the table in the system catalog under the appropriate
system catalog table. There is never a need to manually update any table in the system catalog. The
database server for each implementation performs these updates according to actions that occur within the
database, as shown in Figure 21.2.

Figure 21.2: Updates to the system catalog.

Warning Never directly manipulate tables in the system catalog in any way. Doing so
may compromise the database's integrity. Remember that information
concerning the structure of the database, as well as all objects in the
database, are maintained in the system catalog. The system catalog is
typically isolated from all other data in the database.

Summary

You have learned about the system catalog for a relational database. The system catalog is, in a sense, a
database within a database. The system catalog is essentially a database that contains all information about
the database in which it resides. It is a way of maintaining the database's overall structure, tracking events
and changes that occur within the database, and providing a vast pool of information necessary for overall
database management. The system catalog is only used for query operations. No database user should ever
make changes directly to system tables. However, changes are implicitly made each time a change is made
to the database structure itself, such as the creation of a table. These entries in the system catalog are made
automatically by the database server.

Q&A
Q. As a database user, I realize I can find information about my objects. How

can I find information about other users' objects?
A.

There are sets of tables and/or views that users can use to query in most
system catalogs. One set of these tables and views includes information on
what objects to which you have access.

Q. If a user forgets his or her password, is there a table that the database
administrator can query to get the password?

A.

Yes and no. The password is maintained in a system table, but is typically
encrypted, so that even the database administrator cannot read the
password. The password will have to be reset if the user forgets it, which the
database administrator can easily accomplish.

Q. How can I tell what columns are in a system catalog table?
A. The system catalog tables can be queried as any other table. Simply query

 - 200 -

the table that holds that particular information.

Workshop
The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. The system catalog is also known as what in some implementations?
2. Can a regular user update the system catalog?
3. What Sybase system table is used to retrieve information about views that exist in

the database?
4. Who owns the system catalog?
5. What is the difference between the Oracle system objects ALL_TABLES and

DBA_TABLES?
6. Who makes modifications to the system tables?

Exercises
1. Try querying the system catalog tables for your implementation. You can start

with the tables that hold information about your user database user account.
2. Query the system catalog to list all tables to which you have access.
3. Query the tables that contain system and object privileges that you have been

granted.
4. If you have the DBA or SELECT privilege on the database administrator tables,

query these tables. If you do not have these privileges, take a look at a hard copy
of the tables, which should be located in your implementation documentation set.

Part VIII: Applying SQL Fundamentals in Today's World
Chapter List

Hour 22: Advanced SQL Topics
Hour 23: Extending SQL to the Enterprise, the Internet, and the Intranet
Hour 24: Extensions to Standard SQL

Hour 22: Advanced SQL Topics
Overview

During this hour, you are introduced to some advanced SQL topics. By the end of the hour you should
understand the concepts behind cursors, stored procedures, triggers, dynamic SQL, direct versus embedded
SQL, and SQL generated from SQL.

Advanced Topics
The advanced SQL topics discussed this hour are those that extend beyond the basic operations that you
have learned so far, such as querying data from the database, building database structures, and
manipulating data within the database. These advanced topics are features available in many
implementations, all of which provide enhancements to the parts of SQL discussed so far.

Note Not all topics are ANSI SQL, so you must check your particular implementation
for variations in syntax and rules. A few major vendors' syntax is shown here for
comparison.

 - 201 -

Cursors
 New Term To most people, a cursor is commonly known as a blinking dot or square that appears on the
monitor and indicates where you are in a file or application. That is not the same type of cursor discussed
here. An SQL cursor is an area in database memory where the last SQL statement is stored. If the current
SQL statement is a database query, a row from the query is also stored in memory. This row is the cursor's
current value or current row. The area in memory is named and is available to programs.

A cursor is typically used to retrieve a subset of data from the database. Thereby, each row in the
cursor can be evaluated by a program, one row at a time. Cursors are normally used in SQL that is
embedded in procedural-type programs. Some cursors are created implicitly by the database server,
whereas others are defined by the SQL programmer. Each SQL implementation may define the use of
cursors differently.

This section shows syntax examples from two popular implementations: Microsoft SQL Server and
Oracle.

The syntax to declare a cursor for Microsoft SQL Server is as follows:
DECLARE CURSOR_NAME CURSOR
FOR SELECT_STATEMENT
[FOR [READ ONLY | UPDATE [COLUMN_LIST]}]

The syntax for Oracle is as follows:
DECLARE CURSOR CURSOR_NAME
IS {SELECT_STATEMENT}
The following cursor contains the result subset of all records from the EMPLOYEE_TBL table:
DECLARE CURSOR EMP_CURSOR IS
SELECT * FROM EMPLOYEE_TBL
{ OTHER PROGRAM STATEMENTS }

According to the ANSI standard, the following operations are used to access a cursor once it has been
defined:
OPEN Opens

a
defined
cursor

FETCH Fetches
rows
from a
cursor
into a
progra
m
variable

CLOSE Closes
the
cursor
when
operati
ons
against
the
cursor
are
complet
e

 - 202 -

Opening a Cursor
When a cursor is opened, the specified cursor's SELECT statement is executed and the results of the query
are stored in a staging area in memory.

The syntax to open a cursor in dBase is as follows:
OPEN CURSOR_NAME

The syntax in Oracle is as follows:
OPEN CURSOR_NAME [PARAMETER1 [, PARAMETER2]]
To open the EMP_CURSOR:
OPEN EMP_CURSOR

Fetching Data from a Cursor
The contents of the cursor (results from the query) can be retrieved through the use of the FETCH statement
once a cursor has been opened.

The syntax for the FETCH statement in Microsoft SQL Server is as follows:
FETCH CURSOR_NAME [INTO FETCH_LIST]

The syntax for Oracle is as follows:
FETCH CURSOR_NAME {INTO : HOST_VARIABLE
[[INDICATOR] : INDICATOR_VARIABLE]
[, : HOST_VARIABLE
[[INDICATOR] : INDICATOR_VARIABLE]]
| USING DESCRIPTOR DESCRIPTOR]

The syntax for dBase is as follows:
FETCH CURSOR_NAME INTO MEMORY_VARIABLES
To fetch the contents of EMP_CURSOR into a variable called EMP_RECORD, your FETCH statement may
appear as follows:
FETCH EMP_CURSOR INTO EMP_RECORD

Closing a Cursor
You can obviously close a cursor if you can open a cursor. Closing a cursor is quite simple. After it's closed,
it is no longer available to user programs.

Note Closing a cursor does not necessarily free the memory associated with the
cursor. In some implementations, the memory used by a cursor must be
deallocated by using the deallocate statement. When the cursor is
deallocated, the memory associated is freed and the name of the cursor can then
be reused. In other implementations, memory is implicitly deallocated when the
cursor is closed. Memory is available for other operations, such as opening
another cursor, when space used by a cursor is reclaimed.

The Microsoft SQL Server syntax for the closing of a cursor and the deallocation of a cursor is as
follows:
CLOSE CURSOR_NAME

DEALLOCATE CURSOR CURSOR_NAME
When the cursor is closed in Oracle, the resources and name are released without the DEALLOCATE
statement. The syntax for Oracle is as follows:
CLOSE CURSOR_NAME

To release the resources in dBase, the table must be closed and reopened before the resources are
released and the name can be reused. The syntax for dBase is as follows:

 - 203 -

CLOSE CURSOR_NAME
Note As you can see from the previous examples, variations among the

implementations are extensive, especially with advanced features of and
extensions to SQL, which are covered during Hour 24, "Extensions to Standard
SQL." You must check your particular implementation for the exact usage of a
cursor.

Stored Procedures and Functions

Stored procedures are groupings of related SQL statements—commonly referred to as functions and
subprograms—that allow ease and flexibility for a programmer. This ease and flexibility is derived from the
fact that a stored procedure is often easier to execute than a number of individual SQL statements. Stored
procedures can be nested within other stored procedures. That is, a stored procedure can call another stored
procedure, which can call another stored procedure, and so on.

Stored procedures allow for procedural programming. The basic SQL DDL, DML, and DQL statements
(CREATE TABLE, INSERT, UPDATE, SELECT, and so on) allow you the opportunity to tell the database
what needs to be done, but not how to do it. By coding stored procedures, you tell the database engine
how to go about processing the data.
 New Term A stored procedure is a group of one or more SQL statements or functions that are stored in
the database and compiled and are ready to be executed by a database user. A stored function is the
same as a stored procedure, but a function is used to return a value.

Functions are called by procedures. When a function is called by a procedure, parameters can be
passed into a function like a procedure, a value is computed, and then the value is passed back to the
calling procedure for further processing.

When a stored procedure is created, the various subprograms and functions (that use SQL) that
compose the stored procedure are actually stored in the database. These stored procedures are pre-
parsed, and are immediately ready to execute when invoked by the user.

The Microsoft SQL Server syntax for creating a stored procedure is as follows:
CREATE PROCEDURE PROCEDURE_NAME
[[(] @PARAMETER_NAME
DATATYPE [(LENGTH) | (PRECISION] [, SCALE])
[= DEFAULT][Output]]
[, @PARAMETER_NAME
DATATYPE [(LENGTH) | (PRECISION [, SCALE])
[= DEFAULT][Output]] [)]]
[WITH RECOMPILE]
AS SQL_STATEMENTS

The syntax for Oracle is as follows:
CREATE [OR REPLACE] PROCEDURE PROCEDURE_NAME
[(ARGUMENT [{IN | OUT | IN OUT}] TYPE,
ARGUMENT [{IN | OUT | IN OUT}] TYPE)] {IS | AS}
PROCEDURE_BODY

An example of a very simple stored procedure is as follows:
Input
CREATE PROCEDURE NEW_PRODUCT
(PROD_ID IN VARCHAR2, PROD_DESC IN VARCHAR2, COST IN NUMBER)
AS
BEGIN
 INSERT INTO PRODUCTS_TBL
 VALUES (PROD_ID, PROD_DESC, COST);

 - 204 -

 COMMIT;
END;
Output
Procedure created.
This procedure is used to insert new rows into the PRODUCTS_TBL table.

The syntax for executing a stored procedure in Microsoft SQL Server is as follows:
EXECUTE [@RETURN_STATUS =]
PROCEDURE_NAME
[[@PARAMETER_NAME =] VALUE |
[@PARAMETER_NAME =] @VARIABLE [Output]]
[WITH RECOMPLIE]

The syntax for Oracle is as follows:
EXECUTE [@RETURN STATUS =] PROCEDURE NAME
[[@PARAMETER NAME =] VALUE | [@PARAMETER NAME =] @VARIABLE [Output]]]
[WITH RECOMPLIE]

Now execute the procedure you have created:
Input
EXECUTE NEW_PRODUCT ('9999','INDIAN CORN',1.99);
Output
PL/SQL procedure successfully completed.

Note You may find that there are distinct differences between the allowed syntax used
to code procedures in different implementations of SQL. The basic SQL
commands should be the same, but the programming constructs (variables,
conditional statements, cursors, loops) may vary drastically among
implementations.

Advantages of Stored Procedures and Functions
Stored procedures pose several distinct advantages over individual SQL statements executed in the
database. Some of these advantages include the following:

 The statements are already stored in the database.
 The statements are already parsed and in an executable format.
 Stored procedures support modular programming.
 Stored procedures can call other procedures and functions.
 Stored procedures can be called by other types of programs.
 Overall response time is typically better with stored procedures.
 Overall ease of use.

Triggers

 New Term A trigger is a compiled SQL procedure in the database used to perform actions based on other
actions that occur within the database. A trigger is a form of a stored procedure that is executed when a
specified (Data Manipulation Language) action is performed on a table. The trigger can be executed before
or after an INSERT, DELETE, or UPDATE. Triggers can also be used to check data integrity before and
INSERT, DELETE, or UPDATE. Triggers can roll back transactions, and they can modify data in one table and
read from another table in another database.

Triggers, for the most part, are very good functions to use; they can, however, cause more I/O
overhead. Triggers should not be used when a stored procedure or a program can accomplish the same
results with less overhead.
The CREATE TRIGGER Statement

A trigger can be created using the CREATE TRIGGER statement.

The ANSI standard syntax is:

 - 205 -

CREATE TRIGGER TRIGGER NAME
[[BEFORE | AFTER] TRIGGER EVENT ON TABLE NAME]
[REFERENCING VALUES ALIAS LIST]
[TRIGGERED ACTION
TRIGGER EVENT::=
INSERT | UPDATE | DELETE [OF TRIGGER COLUMN LIST]
TRIGGER COLUMN LIST ::= COLUMN NAME [,COLUMN NAME]
VALUES ALIAS LIST ::=
VALUES ALIAS LIST ::=
OLD [ROW] [AS] OLD VALUES CORRELATION NAME |
NEW [ROW] [AS] NEW VALUES CORRELATION NAME |
OLD TABLE [AS] OLD VALUES TABLE ALIAS |
NEW TABLE [AS] NEW VALUES TABLE ALIAS
OLD VALUES TABLE ALIAS ::= IDENTIFIER
NEW VALUES TABLE ALIAS ::= IDENTIFIER
TRIGGERED ACTION ::=
[FOR EACH [ROW | STATEMENT] [WHEN SEARCH CONDITION]]
TRIGGERED SQL STATEMENT
TRIGGERED SQL STATEMENT ::=
SQL STATEMENT | BEGIN ATOMIC [SQL STATEMENT;]
END

The Microsoft SQL Server syntax to create a trigger is as follows:
CREATE TRIGGER TRIGGER_NAME
ON TABLE_NAME
FOR { INSERT | UPDATE | DELETE [, ..]}
AS
SQL_STATEMENTS
[RETURN]

The basic syntax for Oracle is as follows:
CREATE [OR REPLACE] TRIGGER TRIGGER_NAME
[BEFORE | AFTER]
[DELETE | INSERT | UPDATE]
ON [USER.TABLE_NAME]
[FOR EACH ROW]
[WHEN CONDITION]
[PL/SQL BLOCK]

The following is an example trigger:
Input
CREATE TRIGGER EMP_PAY_TRIG
AFTER UPDATE ON EMPLOYEE_PAY_TBL
FOR EACH ROW
BEGIN
 INSERT INTO EMPLOYEE_PAY_HISTORY
 (EMP_ID, PREV_PAY_RATE, PAY_RATE, DATE_LAST_RAISE,

 - 206 -

 TRANSACTION_TYPE)
 VALUES
 (:NEW.EMP_ID, :OLD.PAY_RATE, :NEW.PAY_RATE,
 :NEW.DATE_LAST_RAISE, 'PAY CHANGE');
END;
/
Output
Trigger created.
This example shows the creation of a trigger called EMP_PAY_TRIG. This trigger inserts a row into the
EMPLOYEE_PAY_HISTORY table, reflecting the changes made every time a row of data is updated in
the EMPLOYEE_PAY_TBL table.

Note The body of a trigger cannot be altered. You must either replace or re-create the
trigger. Some implementations allow a trigger to be replaced (if the trigger with
the same name already exists) as part of the CREATE TRIGGER statement.

The DROP TRIGGER Statement
A trigger can be dropped using the DROP TRIGGER statement. The syntax for dropping a trigger is as
follows:

DROP TRIGGER TRIGGER_NAME

Dynamic SQL
Dynamic SQL allows a programmer or end user to create an SQL statement's specifics at runtime and pass
the statement to the database. The database then returns data into the program variables, which are bound
at SQL runtime.

To comprehend dynamic SQL, review static SQL. Static SQL is what this book has discussed thus far.
A static SQL statement is written and not meant to be changed. Although static SQL statements can be
stored as files ready to be executed later or as stored procedures in the database, static SQL does not
quite offer the flexibility that is allowed with dynamic SQL.
The problem with static SQL is that even though numerous queries may be available to the end user,
there is a good chance that none of these "canned queries" will satisfy the users' needs on every
occasion. Dynamic SQL is often used by ad hoc query tools, which allow an SQL statement to be
created on-the-fly by a user to satisfy the particular query requirements for that particular situation. After
the statement is customized according to the user's needs, the statement is sent to the database,
checked for syntax errors and privileges required to execute the statement, and is compiled in the
database where the statement is carried out by the database server. Dynamic SQL can be created by
using call-level interface, which is explained in the next section.

Note Although dynamic SQL provides more flexibility for the end user's query needs,
the performance may not compare to that of a stored procedure, whose code has
already been analyzed by the SQL optimizer.

Call-Level Interface

 New Term Call-level interface is used to embed SQL code in a host program, such as ANSI C. Application
programmers should be very familiar with the concept of call-level interface. It is one of the methods that
allows a programmer to embed SQL in different procedural programming languages. When using call-level
interface (CLI), you simply pass the text of an SQL statement into a variable using the rules of the host
programming language. You can execute the SQL statement in the host program through the use of the
variable into which you passed the SQL text.
EXEC SQL is a common host programming language command that allows you to call an SQL
statement (CLI) from within the program.
EXEC SQL

The following are examples of programming languages that support CLI:
 COBOL
 ANSI C
 Pascal
 Fortran
 Ada

 - 207 -

Note Refer to the syntax of the host programming language with which you are using
call-level interface options.

Using SQL to Generate SQL

Using SQL to generate SQL is very valuable time-budgeting when writing SQL statements. Assume you
have 100 users in the database already. A new role, ENABLE (a user-defined object that is granted
privileges), has been created and must be granted to those 100 users. Instead of manually creating 100
GRANT statements, the following SQL statement generates each of those statements for you:

SELECT 'GRANT ENABLE TO '|| USERNAME||';'
FROM SYS.DBA_USERS;

This example uses Oracle's system catalog view (which contains information for users).
Notice the use of single quotation marks around the GRANT ENABLE TO. The use of single quotation
marks allows whatever is between the marks to be literal. Remember that literal values can be selected
from tables, the same as columns from a table. USERNAME is the column in the system catalog table
SYS.DBA_USERS. The double pipe signs (||) are used to concatenate the columns. The use of double
pipes followed by ';' concatenates the semicolon to the end of the username, thus completing the
statement.

The results of the SQL statement look like the following:
GRANT ENABLE TO RRPLEW;
GRANT ENABLE TO RKSTEP;
These results should be spooled to a file, which can be sent to the database. The database, in turn,
executes each SQL statement in the file, saving you many keystrokes and much time. The GRANT
ENABLE TO USERNAME; statement is repeated once for every user in the database.

Next time you are writing SQL statements and have repeated the same statement several times, allow
your imagination to take hold and let SQL do the work for you.

Direct Versus Embedded SQL

Direct SQL is where an SQL statement is executed from some form of an interactive terminal. The SQL
results are returned directly to the terminal that issued the statement. Most of this book has focused on direct
SQL. Direct SQL is also referred to as interactive invocation or direct invocation.

 New Term Embedded SQL is SQL code used within other programs, such as Pascal, Fortran, COBOL,
and C. SQL code is actually embedded in a host programming language, as discussed previously, with
call-level interface. Embedded SQL statements in host programming language code are commonly
preceded by EXEC SQL and terminated by a semicolon in many cases. Other termination characters
include END-EXEC and the right parenthesis.

The following is an example of embedded SQL in a host program, such as the ANSI C language:
{host programming commands}
EXEC SQL {SQL statement};
{more host programming commands}

Summary

Some advanced SQL concepts are discussed this hour. Although this hour does not go into a lot of detail, it
does provide you with a basic understanding of how you can apply the basic concepts that you have learned
up to this point. You start with cursors, which are used to pass a data set selected by a query into a location
in memory. After a cursor is declared in a program, it must first be opened for accessibility. Then the
contents of the cursor are fetched into a variable, at which time the data can be used for program
processing. The result set for the cursor is contained in memory until the cursor is closed and the memory
deallocated.

Stored procedures and triggers are covered next. Stored procedures are basically SQL statements that
are stored together in the database. These statements, along with other implementation-specific
commands, are compiled in the database and are ready to be executed by a database user at any given
time. A trigger is also a type of stored procedure—one that allows actions to be automatically performed

 - 208 -

based on other actions that occur within the database. Stored procedures typically provide better
performance benefits than individual SQL statements.

Dynamic SQL, using SQL to generate other SQL statements, and the differences between direct SQL
and embedded SQL were the last subjects discussed. Dynamic SQL is SQL code dynamically created
during runtime by a user, unlike static SQL. Using SQL code to generate other SQL statements is a
great time-saver. It is a way of automating the creation of numerous, tedious SQL statements using
features available with your implementation, such as concatenation and the selection of literal values.
Finally, the main difference between direct SQL and embedded SQL is that the user issues direct SQL
statements from some terminal, whereas embedded SQL is actually embedded within a host program to
help process data.
The concepts of some of the advanced topics discussed during this hour are used to illustrate the
application of SQL in an enterprise, covered in Hour 23, "Extending SQL to the Enterprise, the Internet,
and the Intranet."

Q&A

Q. Can a stored procedure call another stored procedure?
A. Yes. The stored procedure being called is referred to as being nested.
Q. How do I execute a cursor?
A. Simply use the OPEN CURSOR statement. This sends the results of the

cursor to a staging area.

Workshop
The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. Can a trigger be altered?
2. When a cursor is closed, can you reuse the name?
3. What command is used to retrieve the results after a cursor has been opened?
4. Are triggers executed before or after an INSERT, DELETE, or UPDATE?

Exercises
1. Using your implementation's system catalog tables, write the SQL that creates the

following SQL statements. Substitute the name of an actual object for the object
names.

a. GRANT SELECT ON TABLE_NAME TO USERNAME;
b. GRANT, CONNECT, RESOURCE TO USERNAME;
c. SELECT COUNT(*) FROM TABLE_NAME;

2. Write a statement to create a stored procedure that deletes an entry from the
PRODUCTS_TBL table; it should be similar to the example used in this hour to
insert a new product.

3. Write the statement that executes the stored procedure that you created in
Exercise 2 to delete the row for PROD_ID '9999'.

Hour 23: Extending SQL to the Enterprise, the Internet,
and the Intranet
Overview

During this hour, you learn how SQL is actually used in an enterprise and a company's intranet and how it
has been extended to the Internet.

 - 209 -

SQL and the Enterprise
 New Term The previous hour covered some advanced SQL topics. These topics built on earlier hours in the
book and began to show you practical applications for the SQL you have learned. During this hour, you focus
on the concepts behind extending SQL to the enterprise, which involve SQL applications and making data
available to all appropriate members of a company for daily use. Many commercial enterprises have specific
data available to other enterprises, customers, and vendors. For example, the enterprise may have detailed
information on its products available for customers' access in hopes of acquiring more purchases. Enterprise
employee needs are included as well. For example, employee-specific data can also be made available,
such as for timesheet logs, vacation schedules, training schedules, company policies, and so on. A database
can be created, and customers and employees can be allowed easy access to an enterprise's important data
via SQL and an Internet language.

The Back End
 New Term The heart of any application is the back-end application. This is where things happen behind the
scenes, transparent to the database end user. The back-end application includes the actual database server,
data sources, and the appropriate middleware used to connect an application to the Web or a remote
database on the local network.

 New Term As a review, some of the major database servers include Oracle, Informix, Sybase,
Microsoft SQL Server, and Borland InterBase. This is typically the first step in porting any application,
either to the enterprise through a local area network (LAN), to the enterprise's own intranet, or to the
Internet. Porting describes the process of implementing an application in an environment that is
available to users. The database server should be established by an onsite database administrator who
understands the company's needs and the application's requirements.

The middleware for the application includes a Web server and a tool capable of connecting the Web
server to the database server. The main objective is to have an application on the Web that can
communicate with a corporate database.

The Front-End Application
 New Term The front-end application is the part of an application with which an end user interacts. The front-
end application is either a commercial, off-the-shelf software product that a company purchases, or an
application that is developed in-house using other third-party tools. Third-party tools are those described in
the following paragraphs.

Before the rise of many of the new front-end tools available today, users had to know how to program in
languages such as C++, HTML, or one of many other procedural programming languages that develop
Web-based applications. Other languages, such as ANSI C, COBOL, FORTRAN, and Pascal, have
been used to develop front-end, onsite corporate applications, which were mainly character-based.
Today, most newly developed front-end applications are GUI—they have a graphical user interface.

The tools available today are user-friendly and object-oriented, by way of icons, wizards, and dragging
and dropping with the mouse. Some of the popular tools to port applications to the Web include
C++Builder and IntraBuilder by Borland and Microsoft's Visual J++ and C++. Other popular applications
used to develop corporate-based applications on a LAN include PowerBuilder by Powersoft,
Developer/2000 by Oracle Corporation, Visual Basic by Microsoft, and Delphi by Borland.

Note The front-end application promotes simplicity for the database end user. The
underlying database, code, and events that occur within the database are
transparent to the user. The front-end application is developed to relieve the end
user from guesswork and confusion, which may otherwise be caused by having to
be too intuitive to the system itself. The new technologies allow the applications to
be more intuitive, enabling the end users to focus on the true aspects of their
particular jobs, thereby increasing overall productivity.

Figure 23.1 illustrates the back-end and front-end components of a database application. The back end
resides on the host server, where the database resides. Back-end users include developers,
programmers, database administrators, system administrators, and system analysts. The front-end
application resides on the client machine, which is typically each end user's PC. End users are the vast
audience for the front-end component of an application, which can include users such as data entry
clerks and accountants. The end user is able to access the back-end database through a network
connection—either a local area network (LAN) or a wide area network (WAN). Some type of middleware
(such as an ODBC driver) is used to provide a connection between the front and back ends through the
network.

 - 210 -

Figure 23.1: A database application.

Accessing a Remote Database
 New Term Sometimes the database you are accessing is a local database, one to which you are directly
connected. For the most part, you will probably access some form of a remote database. A remote database
is one that is nonlocal, located on a server other than the server to which you are currently connected,
meaning that you must utilize the network and some network protocol in order to interface with the database.

There are several ways to access a remote database. From a broad perspective, a remote database is
accessed via the network or Internet connection using a middleware product (ODBC, a standard
middleware, is discussed in the next section). Figure 23.2 shows three scenarios for accessing a remote
database.

Figure 23.2: Accessing a remote database.

This figure shows access to a remote server from another local database server, a local front-end
application, and a local host server. The local database server and local host server are often the same
because the database normally resides on a local host server. However, you can usually connect to a
remote database from a local server without a current local database connection. For the end user, the
front-end application is the most typical method of remote database access. All methods must route
their database requests through the network.

ODBC
 New Term Open Database Connectivity (ODBC) allows connections to remote databases through a library
driver. An ODBC driver is used by a front-end application to interface with a back-end database. A network
driver may also be required for a connection to a remote database. An application calls the ODBC functions,
and a driver manager loads the ODBC driver. The ODBC driver processes the call, submits the SQL request,
and returns the results from the database. ODBC is now a standard and is used by several products, such as
Sybase's PowerBuilder, FoxPro, Visual C++, Visual Basic, Borland's Delphi, Microsoft Access, and many
more.

As a part of ODBC, all the RDBMS vendors have an Application Programmatic Interface (API) with their
database. Oracle's Open Call Interface (OCI) and Centura's SQLGateway and SQLRouter are some of
the available products.

Vendor Connectivity Products
In addition to an ODBC driver, many vendors have their own products that allow a user to connect to a
remote database. Each of these vendor products is specific to the particular vendor implementation and may
not be portable to other types of database servers.

Oracle Corporation has a product called Net8, which allows for remote database connectivity. Net8 can
be used with almost all the major network products such as TCP/IP, OSI, SPX/IPX, and more. In
addition, Net8 runs on most of the major operating systems.

 - 211 -

Sybase, Incorporated has a product called Open Client/C Developers Kit, which supports other vendor
products such as Oracle's Net8.

Accessing a Remote Database Through a Web Interface

Accessing a remote database through a Web interface is very similar to accessing one through a local
network. The main difference is that all requests to the database from the user are routed through the Web
server (see Figure 23.3).

Figure 23.3: A Web interface to a remote database.

You can see in Figure 23.3 that an end user accesses a database through a Web interface by first
invoking a Web browser. The Web browser is used to connect to a particular URL or Internet IP
address, determined by the location of the Web server. The Web server authenticates user access and
sends the user request, perhaps a query, to the remote database, which may also verify user
authenticity. The database server then returns the results to the Web server, which displays the results
on the user's Web browser. Unauthorized access to a particular server can be controlled by using a
firewall.
 New Term A firewall is a security mechanism that ensures against unauthorized connections to a
server. One or multiple firewalls can be enabled to patrol access to a database or server.

Warning Be careful what information you make available on the Web. Always ensure
that precautions are taken to properly implement security at all appropriate
levels; that may include the Web server, the host server, and the remote
database. Privacy act data, such as individuals' Social Security numbers,
should always be protected and should not be broadcast over the Web.

SQL and the Internet

SQL can be embedded or used in conjunction with programming languages such as C or COBOL. SQL can
also be embedded in Internet programming languages, such as Java. Text from HTML, another Internet
language, can be translated into SQL to send a query to a remote database from a Web front-end. After the
database resolves the query, the output is translated back into HTML and displayed on the Web browser of
the individual executing the query. The following sections discuss the use of SQL on the Internet.

Making Data Available to Customers Worldwide
With the advent of the Internet, data became available to customers and vendors worldwide. The data is
normally available for read-only access through a front-end tool.

The data that is available to customers can contain general customer information, product information,
invoice information, current orders, back orders, and other pertinent information. Private information,
such as corporate strategies and employee information, should not be available.

Home Web pages on the Internet have become nearly a necessity for companies that want to keep
pace with their competition. A Web page is a very powerful tool that can tell surfers all about a
company—its services, products, and other information—with very little overhead.

 - 212 -

Making Data Available to Employees and Privileged Customers
A database can be made accessible through the Internet or a company's intranet, to employees or its
customers. Using Internet technologies is a valuable communication asset for keeping employees informed
about company policies, benefits, training, and so on.

Front-End Web Tools Using SQL
There are several tools that can access databases. Many have a graphical user interface, where a user does
not necessarily have to understand SQL to query a database. These front-end tools allow users to point and
click with the mouse, to select objects that represent tables, manipulate data within objects, specify criteria
on data to be returned, and so on. These tools are often developed and customized to meet a company's
database needs.

SQL and the Intranet
IBM originally created SQL for use between databases located on mainframe computers and the users on
client machines. The users were connected to the mainframes via a local area network. SQL was adopted as
the standard language of communication between databases and users. An intranet is basically a small
Internet. The main difference is that an intranet is for a single organization's use, whereas the Internet is
accessible to the general public. The user (client) interface in an intranet remains the same as that in a
client/server environment. SQL requests are routed through the Web server and languages (such as HTML)
before being directed to the database for evaluation.

Note Database security is much more stable than security on the Internet. Always be
sure to use the security features available to you through your database server.

Summary

Some concepts behind deploying SQL and database applications to the Internet were discussed as you near
your last hour of study in this book. It is very important, in this day and age, for companies to remain
competitive. To keep up with the rest of the world, it has proven beneficial—almost mandatory—to obtain a
presence on the World Wide Web. In accomplishing this presence, applications must be developed and even
migrated from client/server systems to the Internet on a Web server. One of the greatest concerns when
publishing any kind or any amount of corporate data on the Web is security. Security must be considered,
adhered to, and strictly enforced.

Accessing remote databases across local networks as well as over the Internet was discussed. Each
major method for accessing any type of a remote database requires the use of the network and protocol
adapters used to translate requests to the database. This has been a broad overview of the application
of SQL over local networks, company intranets, and the Internet. After the digestion of a few quiz and
exercise questions, you should be ready to venture into the last hour of your journey through SQL.

Q&A

Q. What is the difference between the Internet and an intranet?
A.

The Internet provides connections for the public to information reservoirs by
using a Web interface. An intranet also uses a Web interface, but only
internal access is allowed, such as to company employees and privileged
customers.

Q. Is a back-end database for a Web application any different than a back-end
database for a client/server system?

A.

The back-end database itself for a Web application is not necessarily any
different than that of a client/server system. However, there are other
requirements that must be met to implement a Web-based application. For
example, a Web server is used to access the database with a Web
application. With a Web application, end users do not typically connect
directly to the database.

Workshop

The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as

 - 213 -

build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. Can a database on a server be accessed from another server?
2. What can a company use to disseminate information to its own employees?
3. Products that allow connections to databases are called what?
4. Can SQL be embedded into Internet programming languages?
5. How is a remote database accessed through a Web application?

Exercises
1. Connect to the Internet and take a look at various companies' home pages. If your

own company has a home page, compare it to the competition's home pages. Ask
yourself these questions about the pages:

a. Does the page come up quickly or is it bogged down with too many
graphics?

b. Is the page interesting to read?
c. Do you know anything about the company, services, or products

after reading the available information?
d. If applicable, has access to the database been easy?
e. Do there appear to be any security mechanisms on the Web page?

2. If your company has an intranet, sign on and take a look at what information is
available about the company. Is there a database available? If so, who is the
vendor? What type of front-end tools are available?

Hour 24: Extensions to Standard SQL
Overview

This hour covers extensions to ANSI-standard SQL. Although most implementations conform to the standard
for the most part, many vendors have provided extensions to standard SQL through various enhancements.

Various Implementations
There are numerous SQL implementations that are released by various vendors. All of the relational
database vendors could not possibly be mentioned; a few of the leading implementations, however, are
discussed. The implementations discussed here are Sybase, dBase, Microsoft SQL Server, and Oracle.
Other popular vendors providing database products other than those mentioned previously include Borland,
IBM, Informix, Progress, CA-Ingres, and many more.

Differences Between Implementations
Although the implementations listed here are relational database products, there are specific differences
between each. These differences stem from the design of the product and the way data is handled by the
database engine; however, this book concentrates on the SQL aspect of the differences. All implementations
use SQL as the language for communicating with the database, as directed by ANSI. Many have some sort
of extension to SQL that is unique to that particular implementation.

Note Differences in SQL have been adopted by various vendors to enhance ANSI SQL
for performance considerations and ease of use. Vendors also strive to make
enhancements that provide them with advantages over other vendors, making
their implementation more attractive to the customer.

Now that you know SQL, you should have little problem adjusting to the differences in SQL among the
various vendors. In other words, if you can write SQL in a Sybase implementation, you should be able
to write SQL in Oracle. Besides, knowing SQL for various vendors accomplishes nothing less than
improving your résumé.
The following sections compare the SELECT statement's syntax from a few major vendors to the ANSI
standard.

 - 214 -

The following is the ANSI standard:
SELECT [DISTINCT] [* | COLUMN1 [, COLUMN2]

FROM TABLE1 [, TABLE2]
[WHERE SEARCH_ CONDITION]
GROUP BY [TABLE_ALIAS | COLUMN1 [, COLUMN2]
[HAVING SEARCH_CONDITION]]
[{UNION | INTERSECT | EXCEPT}][ALL]
[CORRESPONDING [BY (COLUMN1 [, COLUMN2])]
QUERY_SPEC | SELECT * FROM TABLE | TABLE_CONSTRUCTOR]
[ORDER BY SORT_LIST]

The following is the syntax for SQLBase:
SELECT [ALL | DISTINCT] COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE SEARCH_CONDITION]
[GROUP BY COLUMN1 [, COLUMN2]
[HAVING SEARCH_CONDITION]]
[UNION [ALL]]
[ORDER BY SORT_LIST]
[FOR UPDATE OF COLUMN1 [, COLUMN2]]

The following is the syntax for Oracle:
SELECT [ALL | DISTINCT] COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE SEARCH_CONDITION]
[[START WITH SEARCH_CONDITION]
CONNECT BY SEARCH_CONDITION]
[GROUP BY COLUMN1 [, COLUMN2]
[HAVING SEARCH_CONDITION]]
[{UNION [ALL] | INTERSECT | MINUS} QUERY_SPEC]
[ORDER BY COLUMN1 [, COLUMN2]]
[NOWAIT]

The following is the syntax for Informix:
SELECT [ALL | DISTINCT | UNIQUE] COLUMN1 [, COLUMN2]
FROM TABLE1 [, TABLE2]
[WHERE SEARCH_CONDITION]
[GROUP BY {COLUMN1 [, COLUMN2] | INTEGER}
[HAVING SEARCH_CONDITION]]
[UNION QUERY_SPEC]
[ORDER BY COLUMN1 [, COLUMN2]
[INTO TEMP TABLE [WITH NO LOG]]
As you can see by comparing the syntax examples, the basics are there. All have the SELECT, FROM,
WHERE, GROUP BY, HAVING, UNION, and ORDER BY clauses. Each of these clauses works
conceptually the same, but some have additional options that may not be found in other
implementations. These options are called enhancements.

 - 215 -

Compliance with ANSI SQL
Vendors do strive to comply with ANSI SQL; however, none are 100 percent ANSI SQL-standard. Some
vendors have added commands or functions to ANSI SQL, and many of these new commands or functions
have been adopted by ANSI SQL. It is beneficial for a vendor to comply with the standard for many reasons.
One obvious benefit to standard compliance is that the vendor's implementation will be easy to learn, and the
SQL code used is portable to other implementations. Portability is definitely a factor when a database is
being migrated from one implementation to another. Why would a company spend uncountable dollars on a
conversion to another implementation that was not compliant to the standard? It probably wouldn't if too
many changes would have to be made to the application and the new implementation were difficult to learn.
Therefore, ANSI SQL compliance is not a problem in most cases.

Extensions to SQL
Practically all the major vendors have an extension to SQL. A SQL extension is unique to a particular
implementation and is generally not portable between implementations. However, popular standard
extensions are reviewed by ANSI and are sometimes implemented as a part of the new standard.

PL/SQL, which is a product of Oracle Corporation, and Transact-SQL, which is used by both Sybase
and Microsoft SQL Server, are two examples of standard SQL extensions. Both extensions are
discussed in relative detail for the examples during this hour.

Examples of Extensions from Some Implementations

Both PL/SQL and Transact-SQL are considered fourth-generation programming languages. Both are
procedural languages versus SQL, which is a non-procedural language. We will also briefly discuss another
implementation of SQL called MySQL, which can be downloaded from the Internet.

The non-procedural language SQL includes statements such as the following:
 INSERT
 UPDATE
 DELETE
 SELECT
 COMMIT
 ROLLBACK

An SQL extension considered a procedural language includes all of the preceding statements,
commands, and functions of standard SQL. In addition, extensions include statements such as:

 Variable declarations
 Cursor declarations
 Conditional statements
 Loops
 Error handling
 Variable incrementing
 Date conversions
 Wildcard operators
 Triggers
 Stored procedures

These statements allow the programmer to have more control over the way data is handled in a
procedural language.

Note Standard SQL is primarily a non-procedural language, which means that you
issue statements to the database server. The database server decides how to
optimally execute the statement. Procedural languages allow the programmer not
only to request the data to be retrieved or manipulated, but to tell the database
server exactly how to carry out the request.

Transact-SQL
Transact-SQL is a procedural language, which means you tell the database the hows and wheres of finding
and manipulating data; SQL is non-procedural, and the database decides the hows and wheres of selecting

 - 216 -

and manipulating data. Some highlights of Transact-SQL's capabilities include declaring local and global
variables, cursors, error handling, triggers, stored procedures, loops, wildcard operators, date conversions,
and summarized reports.

An example Transact-SQL statement follows:
IF (SELECT AVG(COST) FROM PRODUCTS_TBL) > 50
BEGIN
 PRINT "LOWER ALL COSTS BY 10 PERCENT."
END
ELSE
 PRINT "COSTS ARE REASONABLE."
END
Analysis
This is a very simple Transact-SQL statement. It states that if the average cost in the PRODUCTS_TBL
table is greater than 50, the text "LOWER ALL COSTS BY 10 PERCENT" will be printed. If the
average cost is less-than or equal to 50, the text "COSTS ARE REASONABLE" will be printed.
Notice the use of the IF...ELSE statement to evaluate conditions of data values. The PRINT
command is also a new command. These additional options are not even a drop in the bucket of
Transact-SQL capabilities.

PL/SQL
PL/SQL is Oracle's extension to SQL. Like Transact-SQL, PL/SQL is a procedural language. PL/SQL is
structured in logical blocks of code. There are three sections to a PL/SQL block, two of which are optional.
The first section is the DECLARE section and is optional. The DECLARE section contains variables, cursors,
and constants. The second section is called the PROCEDURE section. The PROCEDURE section contains the
conditional commands and SQL statements. This section is where the block is controlled. The PROCEDURE
section is mandatory. The third section is called the EXCEPTION section. The EXCEPTION section defines
how the program should handle errors and user-defined exceptions. The EXCEPTION section is optional.
Highlights of PL/SQL include the use of variables, constants, cursors, attributes, loops, handling exceptions,
displaying output to the programmer, transactional control, stored procedures, triggers, and packages.

An example PL/SQL statement follows:
DECLARE
 CURSOR EMP_CURSOR IS SELECT EMP_ID, LAST_NAME, FIRST_NAME, MID_INIT
 FROM EMPLOYEE_TBL;
 EMP_REC EMP_CURSOR%ROWTYPE;
BEGIN
 OPEN EMP_CURSOR;
 LOOP
 FETCH EMP_CURSOR INTO EMP_REC;
 EXIT WHEN EMP_CURSOR%NOTFOUND;
 IF (EMP_REC.MID_INIT IS NULL) THEN
 UPDATE EMPLOYEE_TBL
 SET MID_INIT = 'X'
 WHERE EMP_ID = EMP_REC.EMP_ID;
 COMMIT;
 END IF;
 END LOOP;
 CLOSE EMP_CURSOR;
END;
Analysis

 - 217 -

There are two out of three sections being used in this example: the DECLARE section and the
PROCEDURE section. First, a cursor called EMP_CURSOR is defined by a query. Second, a variable called
EMP_REC is declared, whose values have the same data type (%ROWTYPE) as each column in the
defined cursor. The first step in the PROCEDURE section (after BEGIN) is to open the cursor. After the
cursor is opened, you use the LOOP command to scroll through each record of the cursor, which is
eventually terminated by END LOOP. The EMPLOYEE_TBL table should be updated for all rows in the
cursor—if the middle initial of an employee is NULL. The update sets the middle initial to 'X'. Changes
are committed and the cursor is eventually closed.

MySQL
MySQL is a multi-user, multi-threaded SQL database client/server implementation. MySQL consists of a
server daemon, a terminal monitor client program, and several client programs and libraries. The main goals
of MySQL are speed, robustness, and ease of use. MySQL was originally designed to provide faster access
to very large databases.

MySQL can be downloaded from http://www.mysql.com. To install a MySQL binary distribution,
you need GNU gunzip to uncompress the distribution and a reasonable TAR to unpack the distribution.
The binary distribution file will be named mysql-VERSION-OS.tar.gz, where VERSION is the version
ID of MySQL, and OS is the name of the operating system.

An example query from a MySQL database follows:
Input
mysql> SELECT CURRENT_DATE(),VERSION();
Output
+----------------+-----------+
| current_date() | version() |
+----------------+-----------+
| 1999-08-09 | 3.22.23b |
+----------------+-----------+

1 row in set (0.00 sec)
mysql>

Interactive SQL Statements

Interactive SQL statements are SQL statements that ask you for a variable, parameter, or some form of data
before fully executing. Say you have a SQL statement that is interactive. The statement is used to create
users into a database. The SQL statement could prompt you for information such as user ID, name of user,
and phone number. The statement could be for one or many users, and would be executed only once.
Otherwise, each user would have to be entered individually with the CREATE USER statement. The SQL
statement could also prompt you for privileges. Not all vendors have interactive SQL statements; you must
check your particular implementation. The following sections show some examples of interactive SQL using
Oracle.

Using Parameters
 New Term Parameters are variables that are written in SQL and reside within an application. Parameters
can be passed into an SQL statement during runtime, allowing more flexibility for the user executing the
statement. Many of the major implementations allow use of these parameters. The following sections show
examples of passing parameters for Oracle and Sybase.

Oracle
Parameters in Oracle can be passed into an otherwise static SQL statement.

SELECT EMP_ID, LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE EMP_ID = '&EMP_ID'

 - 218 -

The preceding SQL statement returns the EMP_ID, LAST_NAME, and FIRST_NAME for whatever
EMP_ID you enter at the prompt.
SELECT *
FROM EMPLOYEE_TBL
WHERE CITY = '&CITY'
AND STATE = '&STATE'

The preceding statement prompts you for the city and the state. The query returns all data for those
employees living in the city and state that you entered.

Sybase
Parameters in Sybase can be passed into a stored procedure.

CREATE PROC EMP_SEARCH
(@EMP_ID)
AS
SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE_TBL
WHERE EMP_ID = @EMP_ID

Type the following to execute the stored procedure and pass a parameter:
SP_EMP_SEARCH "443679012"

Summary

This hour discussed extensions to standard SQL among vendors' implementations and their compliance with
the ANSI standard. Once you learn SQL, you can easily apply your knowledge—and your code—to other
implementations of SQL. SQL is portable between vendors, being that most SQL code can be utilized among
most implementations with a few minor modifications.

The last part of this hour was spent showing two specific extensions used by three implementations.
Transact-SQL is used by Microsoft SQL Server and Sybase, and PL/SQL is used by Oracle. You should
have seen some similarities between Transact-SQL and PL/SQL. One thing to note is that these two
implementations have first sought their compliance with the standard, and then added enhancements to
their implementations for better overall functionality and efficiency. Also discussed was MySQL, which
was designed to increase performance for large database queries. This hour intended to make you
aware that many SQL extensions do exist and to teach the importance of a vendor's compliance to the
ANSI SQL standard.

If you take what you have learned in this book and apply it (build your code, test it, and build upon your
knowledge), you are well on your way to mastering SQL. Companies have data and cannot function
without databases. Relational databases are everywhere—and because SQL is the standard language
with which to communicate and administer a relational database, you have made an excellent decision
by learning SQL. Good luck!

Q&A

Q. Why do variations in SQL exist?
A.

Variations in SQL exist between the various implementations because of the
way data is stored, the various vendors' ambition for trying to get an
advantage over competition, and new ideas that surface.

Q. After learning basic SQL, will I be able to use SQL in different
implementations?

A.

Yes. However, remember that there are differences and variations between
the implementations. The basic framework for SQL is the same among most
implementations.

 - 219 -

Workshop
The following workshop is composed of a series of quiz questions and practical exercises. The quiz
questions are designed to test your overall understanding of the current material. The practical exercises are
intended to afford you the opportunity to apply the concepts discussed during the current hour, as well as
build upon the knowledge acquired in previous hours of study. Please take time to complete the quiz
questions and exercises before continuing. Refer to Appendix C, "Answers to Quizzes and Exercises," for
answers.

Quiz
1. Is SQL a procedural or non-procedural language?
2. What are some of the reasons differences in SQL exist?
3. What are the three basic operations of a cursor, outside of declaring the cursor?
4. Procedural or non-procedural: With which does the database engine decide how

to evaluate and execute SQL statements?

Exercises
1. Try some research about the SQL variations among the various vendors. Go to a

library or bookstore and look for vendor-specific books on SQL. Compare various
SQL statements, such as Data Manipulation Language (DML). Compare the
INSERTs, DELETEs, and UPDATEs for the differences. You might also look for an
ANSI SQL book in which to make comparisons.

2. Using the EMPLOYEE_TBL (see Appendix D, "CREATE TABLE Statements for
Book Examples"), write the interactive SQL statement that returns the name of all
employees who have a ZIP code of 46234.

Part IX: Appendixes
Appendix List

Appendix A: Common SQL Commands
Appendix B: ASCII Table
Appendix C: Answers to Quizzes and Exercises
Appendix D: CREATE TABLE Statements for Book Examples
Appendix E: INSERT Statements for Data in Book Examples
Appendix F: Glossary

Appendix A: Common SQL Commands
SQL Statements
ALTER TABLE
ALTER TABLE TABLE_NAME
[MODIFY | ADD | DROP]
 [COLUMN COLUMN_NAME][DATATYPE|NULL NOT NULL] [RESTRICT|CASCADE]
[ADD | DROP] CONSTRAINT CONSTRAINT_NAME]

Description: Alters a table's columns.
COMMIT
COMMIT [TRANSACTION]

Description: Saves a transaction to the database.
CREATE DOMAIN
CREATE DOMAIN DOMAIN_NAME AS DATA_TYPE [NULL | NOT NULL]

Description: Creates a domain—an object that is associated with a data type and constraints.
CREATE INDEX
CREATE INDEX INDEX_NAME

 - 220 -

ON TABLE_NAME (COLUMN_NAME)

Description: Creates an index on a table.
CREATE ROLE
CREATE ROLE ROLE NAME
[WITH ADMIN [CURRENT_USER | CURRENT_ROLE]]

Description: Creates a database role to which system and object privileges can be granted.
CREATE TABLE
CREATE TABLE TABLE_NAME
(COLUMN1 DATA_TYPE [NULL|NOT NULL],
 COLUMN2 DATA_TYPE [NULL|NOT NULL]É)

Description: Creates a database table.
CREATE TABLE AS
CREATE TABLE TABLE_NAME AS
SELECT COLUMN1, COLUMN2,...
FROM TABLE_NAME
[WHERE CONDITIONS]
[GROUP BY COLUMN1, COLUMN2,...]
[HAVING CONDITIONS]

Description: Creates a database table based on another table.
CREATE TYPE
CREATE TYPE typename AS OBJECT
(COLUMN1 DATA_TYPE [NULL|NOT NULL],
 COLUMN2 DATA_TYPE [NULL|NOT NULL]É)

Description: Creates a user-defined type that can be used to define columns in a table.
CREATE VIEW
CREATE VIEW AS
SELECT COLUMN1, COLUMN2,...
FROM TABLE_NAME
[WHERE CONDITIONS]
[GROUP BY COLUMN1, COLUMN2,...]
[HAVING CONDITIONS]

Description: Creates a view of a table.
DELETE
DELETE
FROM TABLE_NAME
[WHERE CONDITIONS]

Description: Deletes rows of data from a table.
DROP INDEX
DROP INDEX INDEX_NAME

Description: Drops an index on a table.
DROP TABLE
DROP TABLE TABLE_NAME

Description: Drops a table from the database.

 - 221 -

DROP VIEW
DROP VIEW VIEW_NAME

Description: Drops a view of a table.
GRANT
GRANT PRIVILEGE1, PRIVILEGE2, ... TO USER_NAME

Description: Grants privileges to a user.
INSERT
INSERT INTO TABLE_NAME [(COLUMN1, COLUMN2,...]
VALUES ('VALUE1','VALUE2',...)

Description: Inserts new rows of data into a table.
INSERT...SELECT
INSERT INTO TABLE_NAME
SELECT COLUMN1, COLUMN2
FROM TABLE_NAME
[WHERE CONDITIONS]

Description: Inserts new rows of data into a table based on data in another table.
REVOKE
REVOKE PRIVILEGE1, PRIVILEGE2, ... FROM USER_NAME

Description: Revokes privileges from a user.
ROLLBACK
ROLLBACK [TO SAVEPOINT_NAME]

Description: Undoes a database transaction.
SAVEPOINT
SAVEPOINT SAVEPOINT_NAME
Description: Creates transaction SAVEPOINTs in which to ROLLBACK if necessary.
SELECT
SELECT [DISTINCT] COLUMN1, COLUMN2,...
FROM TABLE1, TABLE2,...
[WHERE CONDITIONS]
[GROUP BY COLUMN1, COLUMN2,...]
[HAVING CONDITIONS]
[ORDER BY COLUMN1, COLUMN2,...]

Description: Returns data from one or more database tables; used to create queries.
UPDATE
UPDATE TABLE_NAME
SET COLUMN1 = 'VALUE1',
 COLUMN2 = 'VALUE2',...
[WHERE CONDITIONS]

Description: Updates existing data in a table.

SQL Clauses
SELECT
SELECT *

SELECT COLUMN1, COLUMN2,...

 - 222 -

SELECT DISTINCT (COLUMN1)

SELECT COUNT(*)

Description: Defines columns to display as part of query output.
FROM
FROM TABLE1, TABLE2, TABLE3,...

Description: Defines tables from which to retrieve data.
WHERE
WHERE COLUMN1 = 'VALUE1'
 AND COLUMN2 = 'VALUE2'
...

WHERE COLUMN1 = 'VALUE1'
 OR COLUMN2 = 'VALUE2'
...
WHERE COLUMN IN ('VALUE1' [, 'VALUE2'])

Description: Defines conditions (criteria) placed on a query for data to be returned.
GROUP BY
GROUP BY GROUP_COLUMN1, GROUP_COLUMN2,...

Description: A form of a sorting operation; used to divide output into logical groups.
HAVING
HAVING GROUP_COLUMN1 = 'VALUE1'
 AND GROUP_COLUMN2 = 'VALUE2'
...
Description: Similar to the WHERE clause; used to place conditions on the GROUP BY clause.
ORDER BY
ORDER BY COLUMN1, COLUMN2,...

ORDER BY 1,2,...

Description: Used to sort a query's results.

Appendix B: ASCII Table

 - 223 -

 - 224 -

 - 225 -

 - 226 -

 - 227 -

 - 228 -

 - 229 -

 - 230 -

Appendix C: Answers to Quizzes and Exercises

 - 231 -

Hour 1, "Welcome to the World of SQL"

Quiz Answers
1. What does the acronym SQL stand for?

A. SQL stands for Structured Query Language.
2. What are the six main categories of SQL commands?

A. Data Definition Language (DDL)

Data Manipulation Language (DML)

Data Query Language (DQL)

Data Control Language (DCL)

Data Administration Commands (DAC)

Transactional Control Commands (TCC)
3. What are the four transactional control commands?

A. COMMIT
ROLLBACK
SAVEPOINT
SET TRANSACTIONS

4. What is the main difference between client/server technologies and the
mainframe?

A. The mainframe is a centralized computer linked to the user through a
dumb terminal. In the client/server environment, the user is linked to
the server via a network and the user typically has a personal
computer versus a dumb terminal.

5. If a field is defined as NULL, does that mean that something has to be entered into
that field?

A. No. If a column is defined as NULL, nothing has to be in the column.
If a column is defined as NOT NULL, then something has to be
entered.

Exercise Answers
1. Identify in what categories the following SQL commands fall.

CREATE TABLE
DELETE
SELECT
INSERT
ALTER TABLE
UPDATE

A. CREATE TABLE DDL, Data Definition Language

DELETE DML, Data Manipulation Language

SELECT DQL, Data Query Language

INSERT DML, Data Manipulation Language

ALTER TABLE DDL, Data Definition Language

UPDATE DML, Data Manipulation Language

 - 232 -

Hour 2, "Defining Data Structures"

Quiz Answers
1. True or false: An individual's Social Security number can be any of the following

data types: constant length character, varying length character, numeric.
A. True, as long as the precision is the correct length.

2. True or false: The scale of a numeric value is the total length allowed for values.
A. False. The precision is the total length, where the scale represents

the number of places reserved to the right of a decimal point.
3. Do all implementations use the same data types?

A. No. Most implementations differ in their use of data types. The data
types prescribed by ANSI are adhered to, but may differ between
implementations according to storage precautions taken by each
vendor.

4. What is the precision and scale of the following:
a. DECIMAL(4,2)

a. precision = 4, scale = 2
b. DECIMAL(10,2)

1. precision = 10, scale = 2
c. DECIMAL(14,1)

0. precision = 14, scale = 1
5. Which numbers could be inserted into a DECIMAL(4,1)?

 . 16.2
a. 116.2
b. 16.21
c. 1116.2
d. 1116.21

The first three fit, although 16.21 is rounded off. The numbers 1116.2 and 1116.21
exceed the maximum precision, which was set at 4.

Exercise Answers
1. Take the following column titles, assign them to a data type, and decide on the

proper length.
a. SSN constant-length character
b. CITY varying-length character
c. STATE varying-length character
d. ZIP constant-length character
e. PHONE_NUMBER constant-length character
f. LAST_NAME varying-length character
g. FIRST_NAME varying-length character
h. MIDDLE_NAME varying-length character
i. SALARY numeric data type
j. HOURLY_PAY_RATE decimal
k. DATE_HIRED date

2. Take the same column titles and decide if they should be NULL or NOT NULL.
a. SSN NOT NULL
b. STATE NOT NULL
c. CITY NOT NULL
d. PHONE_NUMBER NULL
e. ZIP NOT NULL
f. LAST_NAME NOT NULL
g. FIRST_NAME NOT NULL
h. MIDDLE_NAME NULL
i. SALARY NULL
j. HOURLY_PAY_RATE NULL
k. DATE_HIRED NOT NULL

 - 233 -

Every individual may not have a phone (however rare that may be) and not everyone has
a middle name, so these columns should allow NULL values. In addition, not all
employees are paid an hourly rate.

Hour 3, "Managing Database Objects"

Quiz Answers
1. Will the following CREATE TABLE statement work? If not, what needs to be done

to correct the problem(s)?
2. CREATE TABLE EMPLOYEE_TABLE AS:
3. (SSN NUMBER(9) NOT NULL,
4. LAST_NAME VARCHAR2(20) NOT NULL
5. FIRST_NAME VARCHAR2(20) NOT NULL,
6. MIDDLE_NAME VARCHAR2(20) NOT NULL,
7. ST ADDRESS VARCHAR2(30) NOT NULL,
8. CITY CHAR(20) NOT NULL,
9. STATE CHAR2) NOT NULL,
10. ZIP NUMBER(4) NOT NULL,
11. DATE HIRED DATE)
12. STORAGE
13. (INITIAL 3K,

next 1k);
A. The CREATE TABLE statement will not work because there are

several errors in the syntax. The corrected statement follows. A
listing of what was incorrect follows a corrected statement.

CREATE TABLE EMPLOYEE_TABLE
 (SSN NUMBER() NOT NULL,
LAST_NAME VARCHAR2(20) NOT NULL,
FIRST_NAME VARCHAR2(20) NOT NULL,
MIDDLE_NAME VARCHAR2(20),
ST_ADDRESS VARCHAR2(30) NOT NULL,
CITY VARCHAR2(20) NOT NULL,
STATE CHAR(2) NOT NULL,
ZIP NUMBER(5) NOT NULL,
DATE_HIRED DATE)
STORAGE
(INITIAL 3k
NEXT 1k);

The following needs to be done:
2. The as: should not be in this CREATE TABLE statement.
3. Missing a comma after the NOT NULL for the LAST_NAME
column.
4. The MIDDLE_NAME column should be NULL because not
everyone has a middle name.
5. The column ST ADDRESS should be ST_ADDRESS. Being two
words, the database looked at ST as being the column name, which
would make the database look for a valid data type, where it would
find the word ADDRESS.
6. The city column works, although it would be better to use the
VARCHAR2 data type. If all city names were constant length, CHAR
would be okay.
7. The STATE column is missing a left parenthesis.
8. The ZIP column length should be (5), not (4).
9. The DATE HIRED column should be DATE_HIRED with an
underscore to make the column name one continuous string.
10. The comma after 3k in the STORAGE clause should not be
there.

14. Can I drop a column from a table?
 . Yes. However, even though it is an ANSI standard, you must
check your particular implementation to see if it has been accepted.

 - 234 -

15. What happens if I do not include the STORAGE clause in the CREATE TABLE
statement?

 . The CREATE TABLE statement should process, barring any
syntax errors of course; however, most implementations have a
default sizing. Check your particular implementation for the sizing.

Hour 4, "The Normalization Process"

Quiz Answers
1. True or false: Normalization is the process of grouping data into logical related

groups.
A. True.

2. True or false: Having no duplicate or redundant data in a database and having
everything in the database normalized is always the best way to go.

A. False. Not always; normalization can and does slow performance
because more tables must be joined which results in more I/O and
CPU time.

3. True or false: If data is in the third normal form, it is automatically in the first and
second normal forms.

A. True.
4. What is a major advantage of a denormalized database versus a normalized

database?
A. Improved performance.

5. What are some major disadvantages of denormalization?
A. Having redundant and duplicate data takes up valuable space; it is

harder to code, and much more data maintenance is required.

Exercise Answers
1. Employees:

Angela Smith, secretary, 317-545-6789, RR 1 Box 73, Greensburg, Indiana, 47890,
$9.50 hour, date started January 22, 1996, SSN is 323149669.

Jack Lee Nelson, salesman, 3334 N Main St, Brownsburg, IN, 45687, 317-852-9901,
salary of $35,000.00 year, SSN is 312567342, date started 10/28/95.

Customers:

Robert's Games and Things, 5612 Lafayette Rd, Indianapolis, IN, 46224, 317-291-7888,
customer ID is 432A.

Reed's Dairy Bar, 4556 W 10th St, Indianapolis, IN, 46245, 317-271-9823, customer ID is
117A.

Customer Orders:

Customer ID is 117A, date of last order is February 20, 1999, product ordered was
napkins, and the product ID is 661.

A.

Employees Customers Orders

SSN CUSTOMER
ID

CUSTOMER
ID

NAME NAME PRODUCT
ID

STREET ADDRESS STREET
ADDRESS

PRODUCT

CITY CITY DATE
ORDERED

 - 235 -

STATE STATE

ZIP ZIP

PHONE NUMBER PHONE
NUMBER

SALARY

HOURLY PAY

START DATE

POSITION

Hour 5, "Manipulating Data"

Quiz Answers
1. Using the EMPLOYEE_TBL with the structure:

COLUMN DATA TYPE (NOT)NULL
LAST_NAME VARCHAR2(20) NOT NULL
FIRST_NAME VARCHAR2(20) NOT NULL
SSN CHAR(9) NOT NULL
PHONE NUMBER(10) NULL
LAST_NAME FIRST_NAME SSN PHONE

SMITH JOHN 312456788 3174549923
ROBERTS LISA 232118857 3175452321
SMITH SUE 443221989 3178398712
PIERCE BILLY 310239856 3176763990

What would happen if the following statements were run?
a. INSERT INTO EMPLOYEE_TBL
b. (''JACKSON', 'STEVE', '313546078', '3178523443');

A. The INSERT statement would not run because the key word VALUES
is missing in the syntax.

c. INSERT INTO EMPLOYEE_TBL VALUES
d. ('JACKSON', 'STEVE', '313546078', '3178523443');

A. One row would be inserted into the EMPLOYEE_TBL.
e. INSERT INTO EMPLOYEE_TBL VALUES
f. ('MILLER', 'DANIEL', '230980012', NULL);

A. One row would be inserted into the EMPLOYEE_TBL, with a NULL
value in the PHONE column.

g. INSERT INTO EMPLOYEE_TBL VALUES
h. ('TAYLOR', NULL, '445761212', '3179221331');

A. The INSERT statement would not process because the
FIRST_NAME column is NOT NULL.

i. DELETE FROM RMPLOYEE_TBL;
A. All rows in the EMPLOYEE_TBL would be deleted.

j. DELETE FROM EMPLOYEE_TBL
k. WHERE LAST_NAME = 'SMITH';

A. All employees with the last name of SMITH would be deleted from
the EMPLOYEE_TBL.

l. DELETE FROM EMPLOYEE_TBL
m. WHERE LAST_NAME = 'SMITH'

 - 236 -

n. AND FIRST_NAME = 'JOHN';
A. Only JOHN SMITH would be deleted from the EMPLOYEE_TBL.

o. UPDATE EMPLOYEE_TBL
p. SET LAST_NAME – 'CONRAD';

A. All last names would be changed to CONRAD.
q. UPDATE EMPLOYEE_TBL
r. SET LAST_NAME = 'CONRAD'
s. WHERE LAST_NAME = 'SMITH';

A. Both JOHN and SUE SMITH would now be JOHN and SUE CONRAD.
t. UPDATE EMPLOYEE_TBL
u. SET LAST_NAME = 'CONRAD',
v. FIRST_NAME = 'LARRY';

A. All employees are now LARRY CONRAD.
w. UPDATE EMPLOYEE_TBL
x. SET LAST_NAME = 'CONRAD',
y. FIRST_NAME = 'LARRY'
z. WHERE SSN = '312456788';

A. JOHN SMITH is now LARRY CONRAD.

Exercise Answers
1. Using the EMPLOYEE_TBL with the following structure:

COLUMN DATA TYPE (NOT)NULL

LAST_NAME VARCHAR2(20) NOT NULL

FIRST_NNAME VARCHAR2(20) NOT NULL

SSN CHAR(9) NOT NULL

PHONE NUMBER(10) NULL

LAST_NAME FIRST_NAME SSN PHONE

SMITH JOHN 312456788 3174549923

ROBERTS LISA 232118857 3175452321

SMITH SUE 443221989 3178398712

PIERCE BILLY 310239856 3176763990
3. Write DML to accomplish the following:

a. Change Billy Pierce's SSN to 310239857.
A. UPDATE EMPLOYEE_TBL
B. SET SSN = '310239857'
C. WHERE SSN = '310239856';

b. Add Ben Moore to the EMPLOYEE_TBL, PHONE_NUMBER is 317-564-
9880, SSN = 313456789.

A. INSERT INTO EMPLOYEE_TBL VALUES
B. ('MOORE', 'BEN', '313456789',
C. '3175649880');

c. John Smith quit; remove his record.
A. DELETE FROM EMPLOYEE_TBL
B. WHERE SSN = '312456788';

 - 237 -

Hour 6, "Managing Database Transactions"

Quiz Answers
1. True or false: If you have committed several transactions and have several more

transactions that have not been committed and you issue a rollback command, all
your transactions for the same session will be undone.

A. False. When a transaction is committed, the transaction cannot be
rolled back.

2. True or false: A SAVEPOINT actually saves transactions after a specified amount
of transactions have executed.

A. False. A SAVEPOINT is only used as a point for a rollback to return
to.

3. Briefly describe the purpose of each one of the following commands: COMMIT,
ROLLBACK, and SAVEPOINT.

A. The COMMIT saves changes made by a transaction. The ROLLBACK
undoes changes made by a transaction. The SAVEPOINT creates
logical points in a transaction in which to roll back.

Exercise Answers
1. Take the following transactions and create savepoints after every three

transactions; then commit the transactions.
2. SAVEPOINT SAVEPOINT1
3. TRANSACTION1;
4. TRANSACTION2;
5. TRANSACTION3;
6. SAVEPOINT SAVEPOINT2
7. TRANSACTION4;
8. TRANSACTION5;
9. TRANSACTION6;
10. SAVEPOINT SAVEPOINT3
11. TRANSACTION7;
12. TRANSACTION8;
13. TRANSACTION9;
14. SAVEPOINT SAVEPOINT4
15. TRANSACTION10;
16. TRANSACTION11;
17. TRANSACTION12;

COMMIT;

Hour 7, "Introduction to the Database Query"

Quiz Answers
1. Name the required parts for any SELECT statement.

A. The SELECT and FROM keywords, also called clauses, are required
for all SELECT statements.

2. In the WHERE clause, are single quotation marks required for all the data?
A. No. Single quotation marks are required when selecting

alphanumeric data types. Number data types do not require single
quotation marks.

3. Under what part of the SQL language does the SELECT statement (database
query) fall?

A. The SELECT statement is considered Data Query Language.
4. Can multiple conditions be used in the WHERE clause?

A. Yes. Multiple conditions can be specified in the WHERE clause of
SELECT, INSERT, UPDATE, and DELETE statements. Multiple
conditions are used with the operators AND and OR, which are
thoroughly discussed next hour.

 - 238 -

Exercise Answers
1. Look over the following SELECT statements. Determine whether the syntax is

correct. If the syntax is not correct, what would correct the syntax? A table called
EMPLOYEE_TBL is used.

a. SELECT EMP_ID, LAST_NAME, FIRST_NAME,
b. FROM EMPLOYEE_TBL;
c. SELECT EMP_ID, LAST_NAME
d. ORDER BY EMP_ID
e. FROM EMPLOYEE_TBL;
f. SELECT EMP_ID, LAST_NAME, FIRST_NAME
g. FROM EMPLOYEE_TBL
h. WHERE EMP_ID = '333333333'
i. ORDER BY EMP_ID;
j. SELECT EMPE_ID SSN, LAST_NAME
k. FROM EMPLOYEE_TBL
l. WHERE EMP_ID = '333333333'
m. ORDER BY 1;
n. SELECT EMP_ID, LAST_NAME, FIRST_NAME
o. FROM EMPLOYEE_TBL
p. WHERE EMP_ID = '333333333'
q. ORDER BY 3, 1, 2;
R.

s. This SELECT statement does not work because there is a
comma after the FIRST_NAME column that does not belong there.
The correct syntax follows:

t. SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME,
 FROM EMPLOYEE_TBL;

u. This SELECT statement does not work because the FROM and
ORDER BY clauses are in the incorrect order. The correct syntax
follows:

v. SELECT EMP_ID, LAST_NAME
w. FROM EMPLOYEE_TBL

 ORDER BY EM_ID;
x. The syntax for this SELECT statement is correct.
y. The syntax for this SELECT statement is correct. Notice that the
employee_id column is renamed SSN.
z. Yes. The syntax is correct for this SELECT statement. Notice the
order of the columns in the ORDER BY. This SELECT statement
returns records from the database that are sorted by FIRST_NAME,
and then by EMPLOYEE_ID, and finally by LAST_NAME.

Hour 8, "Using Operators to Categorize Data"

Quiz Answers
1. True or false: Both conditions when using the OR operator must be TRUE.

A. False. Only one of the conditions must be TRUE.
2. True or false: All specified values must match when using the IN operator.

A. False. Only one of the values must match.
3. True or false: The AND operator can be used in the SELECT and the WHERE

clauses.
A. False. The AND can only be used in the WHERE clause.

4. What, if anything, is wrong with the following SELECT statements?
a. SELECT SALARY
b. FROM EMPLOYEE_PAY_TBL

c. WHERE SALARY BETWEEN 20000, 30000;
A. The AND is missing between 20000, 30000. The

correct syntax is:
B. SELECT SALARY
C. FROM EMPLOYEE_PAY_TBL

WHERE SALARY BETWEEN 20000 AND 30000;

 - 239 -

d. SELECT SALARY + DATE_HIRE
e. FROM EMPLOYEE_PAY_TBL;

A. The DATE_HIRE column is a DATE data type and is in
the incorrect format for arithmetic functions.

f. SELECT SALARY, BONUS
g. FROM EMPLOYEE_PAY_TBL
h. WHERE DATE_HIRE BETWEEN 22-SEP-97
i. AND 23-NOV-97
j. AND POSITION = 'SALES'
k. OR POSITION = 'MARKETING'

l. AND EMPLOYEE_ID LIKE '%55%;
A. The syntax is correct.

Exercise Answers
1. Using the following CUSTOMER_TBL:
2. DESCRIBE CUSTOMER_TBL
3. Name Null? Type
4. ------------------------------ --------- ------------
5. CUST_ID NOT NULL VARCHAR2(10)
6. CUST_NAME NOT NULL VARCHAR2(30)
7. CUST_ADDRESS NOT NULL VARCHAR2(20)
8. CUST_CITY NOT NULL VARCHAR2(12)
9. CUST_STATE NOT NULL CHAR(2)
10. CUST_ZIP NOT NULL CHAR(5)
11. CUST_PHONE NUMBER(10)

 CUST_FAX NUMBER(10)

Write a SELECT statement that returns customer IDs and customer names (alpha order)
for customers who live in Indiana, Ohio, Michigan, and Illinois, with names that begin with
the letters A or B.

A.
SELECT CUST_ID, CUST_NAME, CUST_STATE
FROM CUSTOMER_TBL
WHERE CUST_STATE IN ('IN', 'OH', 'MI', 'IL')
AND CUST_NAME LIKE 'A%'
OR CUST_NAME LIKE 'B%'
ORDER BY CUST_NAME

12. Using the following PRODUCTS_TBL:
13. DESCRIBE PRODUCTS_TBL
14. Name Null? Type
15. ------------------------------- -------- ------------
16. PROD_ID NOT NULL VARCHAR2(10)
17. PROD_DESC NOT NULL VARCHAR2(25)

COST NOT NULL NUMBER(6,2)

Write a SELECT statement that returns the product ID, PROD_DESC, and the product cost.
Limit the product cost to range from $1.00 to $12.50.

A. SELECT *
B. FROM PRODUCTS_TBL
C. WHERE COST BETWEEN 1.00 AND 12.50

 - 240 -

Hour 9, "Summarizing Data Results from a Query"

Quiz Answers
1. The AVG function returns an average of all rows from a select column including

any NULL values.
A. False. The NULLs are not considered.

2. The SUM function is used to add column totals.
A. False. The SUM function is used to return a total for a group of rows.

3. The COUNT(*) function counts all rows in a table.
A. True.

4. Will the following SELECT statements work? If not, what will fix the statements?
a. SELECT COUNT *

b. FROM EMPLOYEE_PAY_TBL;
A. This statement will not work because the left and right

parentheses are missing around the asterisk. The
correct syntax is

B. SELECT COUNT(*)
 FROM EMPLOYEE_PAY_TBL;

c. SELECT COUNT(EMPLOYEE_ID), SALARY
d. FROM EMPLOYEE_PAY_TBL;

A. Yes, this statement will work.
e. SELECT MIN(BONUS), MAX(SALARY)
f. FROM EMPLOYEE_PAY_TBL

g. WHERE SALARY > 20000;
A. Yes, this statement will work.

Exercise Answers
1. Using the following EMPLOYEE_PAY_TBL:

2. EMP_ID POSITION DATE_HIRE PAY_RATE DATE_LAST
SALARY BONUS

3. --------- ------------- --------- -------- ----------- --------- ---------
4. 311549902 MARKETING 23-MAY-89 01-MAY-99

300002000
5. 442346889 TEAM LEADER 17-JUN-90 14.75 01-JUN-99
6. 213764555 SALES MANAGER 14-AUG-94 01-AUG-99 40000

3000
7. 313782439 SALESMAN 28-JUN-97 20000 1000
8. 220984332 SHIPPER 22-JUL-96 11 01-JUL-99
9. 443679012 SHIPPER 14-JAN-91 15 01-JAN-99
10.

6 rows selected.
Construct SQL statements to find:

1. The average salary.
A. The average salary is $30,000.00. The SQL statement

to return the data is
B. SELECT AVG(SALARY)

FROM EMPLOYEE_PAY_TBL;
2. The maximum bonus.

A. The maximum bonus is $3000.00. The SQL statement
to return the data is

B. SELECT MAX(BONUS)
FROM EMPLOYEE_PAY_TBL;

3. The total salaries.
A. The sum of all the salaries is $60,000.00. The SQL

statement to return the data is
B. SELECT SUM(SALARY)

FROM EMPLOYEE_PAY_TBL;
4. The minimum pay rate.

 - 241 -

A. The minimum pay rate is $11.00 an hour. The SQL
statement to return the data is

B. SELECT MIN(PAY_RATE)
FROM EMPLOYEE_PAY_TBL;

5. The total rows in the table.
1. The total row count of the table is six. The SQL
statement to return the data is

2. SELECT COUNT(*)
FROM EMPLOYEE_PAY_TBL;

Hour 10, "Sorting and Grouping Data"

Quiz Answers
1. Will the following SQL statements work?

a. SELECT SUM(SALARY), EMP_ID
b. FROM EMPLOYEE_PAY_TBL
c. GROUP BY 1 and 2;

A. No, this statement does not work. The and in the
GROUP BY clause does not belong there, and you
cannot use an integer in the GROUP BY clause. The
correct syntax is

B. SELECT SUM(SALARY), EMP_ID
C. FROM EMPLOYEE_PAY_TBL

GROUP BY SALARY, EMP_ID;
d. SELECT EMP_ID, MAX(SALARY)
e. FROM EMPLOYEE_PAY_TBL
f. GROUP BY SALARY, EMP_ID;

A. Yes, this statement will work.
g. SELECT EMP_ID, COUNT(SALARY)
h. FROM EMPLOYEE_PAY_TBL
i. ORDER BY EMP_ID
j. GROUP BY SALARY;

A. No, this statement will not work. The ORDER BY clause
and the GROUP BY clause are not in the correct
sequence. Also, the EMP_ID column is required in the
GROUP BY clause The correct syntax is

B. SELECT EMP_ID, COUNT(SALARY)
C. FROM EMPLOYEE_PAY_TBL
D. GROUP BY EMP_ID

ORDER BY EMP_ID;
2. True or false: You must also use the GROUP BY clause whenever using the

HAVING clause.
A. False. The HAVING clause can be used without a GROUP BY
clause.

3. True or false: The following SQL statement returns a total of the salaries by
groups.

4. SELECT SUM(SALARY)
FROM EMPLOYEE_PAY_TBL;

 . False. The statement cannot return a total of the salaries by
groups because there is no GROUP BY clause.

5. True or false: The columns selected must appear in the GROUP BY clause in the
same order.

 . False. The order of the columns in the SELECT clause can be in
a different order in the GROUP BY clause.

6. The HAVING clause tells the GROUP BY which groups to include.
 . True.

 - 242 -

Exercise Answers
1. Write an SQL statement that returns the employee ID, employee name, and city

from the EMPLOYEE_TBL. Group by the city column first.
A. SELECT EMP_ID, LAST_NAME, FIRST_NAME, CITY
B. FROM EMPLOYEE_TBL
C. GROUP BY CITY, EMP_ID, LAST)NAME, FIRST_NAME;

2. Write an SQL statement that returns the city and a count of all employees per city
from EMPLOYEE_TBL. Add a HAVING clause to display only those cities that have
a count of more than two employees.

A. SELECT CITY, COUNT(EMP_ID)
B. FROM EMPLOYEE_TBL
C. GROUP BY CITY
D. HAVING COUNT(EMP_ID) > 2;

Hour 11, "Restructuring the Appearance of Data"

Quiz Answers
Match the Descriptions with the possible Functions.

DESCRIPTIONS ANSWERS

a. Used to select a portion of a character string. SUBSTR

b. Used to trim characters from either the right or left of a string. LTRIM/RTRIM

c. Used to change all letters to lowercase. LOWER

d. Used to find the length of a string. LENGTH

e. Used to combine strings.(CONCATENATION is the same as ||.) CONCATENATION

2. True or false: The SOUNDEX function is used to compare strings that may sound
alike.

A. True.
3. The outermost function is always resolved first when functions are embedded

within other functions in a query.
A. False. The innermost function is always resolved first when

embedding functions within one another.

Exercise Answers
1. Use the appropriate function to convert the string hello to all uppercase letters.

A. SELECT UPPER('hello') FROM TABLE_NAME
2. Use the appropriate function to print only the first four characters of the string

JOHNSON.
A. SELECT SUBSTR('JOHNSON',1,4) FROM TABLE_NAME

3. Use an appropriate function to concatenate the strings JOHN and SON.
A. Oracle

SELECT 'JOHN' || 'SON' FROM TABLE_NAME
4. or

A. SQL Server
SELECT 'JOHN' + 'SON' FROM TABLE_NAME

Hour 12, "Understanding Dates and Time"

Quiz Answers
1. From where are the system date and time normally derived?

A. The system date is derived from the current date and time of the
operating system on the host machine.

2. List the standard internal elements of a DATETIME value.
A. YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.

 - 243 -

3. What could be a major factor concerning the representation and comparison of
date and time values if your company is an international organization?

A. The awareness of time zones may be a concern.
4. Can a character string date value be compared to a date value defined as a valid

DATETIME data type?
A. A DATETIME data type cannot be accurately compared to a date

value defined as a character string. The character string must first be
converted to the DATETIME data type.

Exercise Answers
1. Provide SQL code for the exercises given the following information:

Use SYSDATE to represent the current date and time.

Use the table called DATES.

Use the TO_CHAR function to convert dates to character strings with the following syntax:
TO_CHAR('EXPRESSION','DATE_PICTURE')

Use the TO_DATE function to convert character strings to dates with the following syntax:
TO_DATE('EXPRESSION','DATE_PICTURE')

Date picture information:

DATE PICTURE MEANING
MONTH Month spelled out
DAY Day spelled out
DD Day of month, number
MM Month of year, number
YY Two-digit year
YYYY Four-digit year
MI Minutes of the hour
SS Seconds of the minute

1. Assuming today is 1999-12-31, convert the current date to the format December
31 1999.

A. SELECT TO_CHAR(SYSDATE,'MONTH DD YYYY')
B. FROM DATES;

2. Convert the following string to DATE format:
'DECEMBER 31 1999'

A. SELECT TO_DATE('DECEMBER 31 1999','MONTH DD YYYY')
B. FROM DATES;

3. Write the code to return the day of the week on which New Year's Eve of 1999
falls. Assume that the date is stored in the format 31-DEC-99, which is a valid
DATETIME data type.

A. SELECT TO_CHAR('31-DEC-99','DAY')
B. FROM DATES;

Hour 13, "Joining Tables in Queries"

Quiz Answers
1. What type of join would you use to return records from one table, regardless of

the existence of associated records in the related table?
A. You would use an OUTER JOIN.

2. The JOIN conditions are located in what part of the SQL statement?

 - 244 -

A. The JOIN conditions are located in the WHERE clause.
3. What type of JOIN do you use to evaluate equality among rows of related tables?

A. You would use an EQUIJOIN.
4. What happens if you select from two different tables but fail to join the tables?

A. You receive a Cartesian Product by not joining the tables (this is also
called a cross join).

5. Use the following tables:
ORD_NUM VARCHAR2(10) NOT

NUL
L

PRIMARY
KEY

CUST_ID VARCHAR2(10) NOT
NUL
L

PROD_ID VARCHAR2(10) NOT
NUL
L

QTY NUMBER(6) NOT
NUL
L

ORD_DATE DATE
PRODUCTS_TBL
PROD_ID VARCHAR2(10) NOT

NUL
L

PRIMARY
KEY

PROD_DESC VARCHAR2(40) NOT
NUL
L

COST NUMBER(6,2) NOT
NUL
L

Is the following syntax correct for using an OUTER JOIN?
SELECT C.CUST_ID, C.CUST_NAME, O.ORD_NUM
FROM CUSTOMER_TBL C, ORDERS_TBL O
WHERE C.CUST_ID(+) = O.CUST_ID(+)

A. No, the syntax is not correct. The (+) operator should only follow the O.CUST_ID
column in the WHERE clause. The correct syntax is

B. SELECT C.CUST_ID, C.CUST_NAME, O.ORD_NUM
C. FROM CUSTOMER_TBL C, ORDERS_TBL O

WHERE C.CUST_ID = O.CUST_ID(+);

Exercise Answers
1. Perform the exercises using the following tables:

EMPLOYEE_TBL
EMP_ID VARCHAR2(9) NOT

NUL
L

PRIMARY KEY

LAST_NAME VARCHAR2(15) NOT
NUL
L

FIRST_NAME VARCHAR2(15) NOT
NUL
L

MIDDLE_NAME VARCHAR2(15)
ADDRESS VARCHAR2(30) NOT

NUL
L

 - 245 -

CITY VARCHAR2(15) NOT
NUL
L

STATE CHAR(2) NOT
NUL
L

ZIP NUMBER(5) NOT
NUL
L

PHONE CHAR(10)
PAGER CHAR(10)

EMPLOYEE_PAY_TBL
EMP_ID VARCHAR2(9) NOT

NUL
L

PRIMARY
KEY

POSITION VARCHAR2(15) NOT
NUL
L

DATE_HIRE DATE
PAY_RATE NUMBER(4,2) NOT

NUL
L

DATE_LAST-RAISE DATE
SALARY NUMBER(6,2)
BONUS NUMBER(4,2)

CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID) REFERENCED
 EMPLOYEE_TBL (EMP_ID)
CUSTOMER_TBL
CUST_ID VARCHAR2(10) NOT

NUL
L

PRIMARY
KEY

CUST_NAME VARCHAR2(30) NOT
NUL
L

CUST_ADDRESS VARCHAR2(20) NOT
NUL
L

CUST_CITY VARCHAR2(15) NOT
NUL
L

CUST_STATE CHAR(2) NOT
NUL
L

CUST_ZIP NUMBER(5) NOT
NUL
L

CUST_PHONE NUMBER(10)
CUST_FAX NUMBER(10)
ORDERS_TBL
ORD_NUM VARCHAR2(10) NOT

NUL
L

PRIMARY
KEY

CUST_ID VARCHAR2(10) NOT
NUL
L

 - 246 -

PROD_ID VARCHAR2(10) NOT
NUL
L

QTY NUMBER(6) NOT
NUL
L

ORD_DATE DATE
PRODUCTS_TBL
PROD_ID VARCHAR2(10) NOT

NUL
L

PRIMARY KEY

PROD_DESC VARCHAR2(40) NOT
NUL
L

COST NUMBER(6,2) NOT
NUL
L

1. Write an SQL statement to return the EMP_ID, LAST_NAME, and FIRST_NAME
from the EMPLOYEE_TBL and SALARY, BONUS from the EMPLOYEE_PAY_TBL.

A. SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME
B. EP.SALARY, EP.BONUS
C. FROM EMPLOYEE_TBL E,
D. EMPLOYE_PAY_TBL EP
E. WHERE E.EMP_ID = EP.EMP_ID

2. Select from the CUSTOMERS_TBL the columns: CUST_ID, CUST_NAME. Select
from the PRODUCTS_TBL the columns: PROD_ID, COST. Select from the
ORDERS_TBL the columns: ORD_NUM, QTY. Join all three of the tables into one
SQL statement.

A. SELECT C.CUST_ID, C.CUST_NAME, P.PROD_ID, P.COST,
B. O.ORD_NUM, O.QTY
C. FROM CUSTOMER_TBL C,
D. PRODUCT_TBL P,
E. ORDERS_TBL O
F. WHERE C.CUST_ID = O.CUST_ID
G. AND P.PROD_ID = O.PROD_ID

Hour 14, "Using Subqueries to Define Unknown Data"

Quiz Answers
1. What is the function of a subquery when used with a SELECT statement?

A. The main function of a subquery when used with a SELECT
statement is to return data that the main query can use to resolve the
query.

2. Can you update more than one column when using the UPDATE statement in
conjunction with a subquery?

A. Yes, you can update more than one column using the same UPDATE
and subquery statement.

3. Are the following syntaxes correct? If not, what is the correct syntax?
a. SELECT CUST_ID, CUST_NAME
b. FROM CUSTOMER_TBL
c. WHERE CUST_ID =
d. (SELECT CUST_ID
e. FROM ORDERS_TBL

f. WHERE ORD_NUM = '16C17')
A. Yes, this syntax is correct.

g. SELECT EMP_ID, SALARY
h. FROM EMPLOYEE_PAY_TBL
i. WHERE SALARY BETWEEN '20000'

 - 247 -

j. AND (SELECT SALARY
k. FROM EMPLOYEE_ID

l. WHERE SALARY = '40000')
A. No. The BETWEEN operator cannot be used in this

format.
m. UPDATE PRODUCTS_TBL
n. SET COST = 1.15
o. WHERE CUST_ID =
p. (SELECT CUST_ID
q. FROM ORDERS_TBL

r. WHERE ORD_NUM = '32A132')
A. Yes, this syntax is correct.

4. What would happen if the following statement were run?
5. DELETE FROM EMPLOYEE_TBL
6. WHERE EMP_ID IN
7. (SELECT EMP_ID

 FROM EMPLOYEE_PAY_TBL)

A. All rows that were retrieved from the
EMPLOYEE_PAY_TBL would be used by the DELETE to
remove them from the EMPLOYEE_TBL. A WHERE
clause in the subquery is highly advised.

Exercise Answers
1. Use the following tables:

EMPLOYEE_TBL

EMP_ID VARCH
AR2(9
)

NOT
NULL

PRIMARY
KEY

LAST_NAME VARCH
AR2(1
5)

NOT
NULL

FIRST_NAME VARCH
AR2(1
5)

NOT
NULL

MIDDLE_NAME VARCH
AR2(1
5)

ADDRESS VARCH
AR2(3
0)

NOT
NULL

CITY VARCH
AR2(1
5)

NOT
NULL

STATE CHAR(
2)

NOT
NULL

ZIP NUMBE
R(5)

NOT
NULL

PHONE CHAR(
10)

 - 248 -

PAGER CHAR(
10)

EMPLOYEE_PAY_TB
L

EMP_ID VARCHAR2(9) NOT
NUL
L

PR
IM
AR
YK
EY

POSITION VARCHAR2(15) NOT
NUL
L

DATE_HIRE DATE

PAY_RATE NYMBER(4,2) NOT
NUL
L

DATE_LAST_RAISE DATE

2. CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID_ REFERENCES
3. EMPLOYEE_TBL (EMP_ID)

CUSTOMER_TBL

CUST
_ID

VAR
CHA
R2(
10)

N
O
T

N
U
L
L

PRIMARYKEY

CUST
_NAM
E

VAR
CHA
R2(
30)

N
O
T

N
U
L
L

CUST
_ADD
RESS

VAR
CHA
R2(
20)

N
O
T

N
U
L
L

CUST
_CIT
Y

VAR
CHA
R2(
15)

N
O
T

N
U
L
L

 - 249 -

CUST
_STA
TE

CHA
R(2
)

N
O
T

N
U
L
L

CUST
_ZIP

NUM
BER
(5)

N
O
T

N
U
L
L

CUST
_PHO
NE

NUM
BER
(10
)

CUST
_FAX

NUM
BER
(10
)

ORDERS_TBL

ORD_NUM VARCHAR2(10) NOT
NUL
L

PRIMARYKEY

CUST_ID VARCHAR2(10) NOT
NUL
L

PROD_ID VARCHAR2(10) NOT
NUL
L

QTY NUMBER(6) NOT
NUL
L

ORD_DATE DATE

PRODUCTS_TBL

PROD_ID VARCHAR2(10) NOT
NUL
L

PRIMARYKEY

PROD_DESC VARCHAR2(40) NOT
NUL
L

COST NUMBER(6,2) NOT
NUL
L

5. Using a subquery, write an SQL statement to update the CUSTOMER_TBL table,
changing the customer name to DAVIDS MARKET, with order number 23E934.

 - 250 -

A. UPDATE CUSTOMER_TBL
B. SET CUST_NAME = 'DAVIDS MARKET'
C. WHERE CUST_ID =
D. (SELECT CUST_ID
E. FROM ORDERS_TBL
F. WHERE ORD_NUM = '23E934');

6. Using a subquery, write a query that returns the names of all employees who
have a pay rate greater than JOHN DOE, who's employee identification number is
343559876.

A. SELECT E.LAST_NAME, E.FIRST_NAME, E.MIDDLE_NAME
B. FROM EMPLOYEE_TBL E,
C. EMPLOYEE_PAY_TBL P
D. WHERE P.PAY_RATE > (SELECT PAY_RATE
E. FROM EMPLOYEE_PAY_TBL
F. WHERE EMP_ID = '343559876');

7. Using a subquery, write a query that lists all products that cost more than the
average cost of all products.

A. SELECT PROD_DESC
B. FROM PRODUCTS_TBL
C. WHERE COST > (SELECT AVG(COST)
D. FROM PRODUCTS_TBL);

Hour 15, "Combining Multiple Queries into One"

Quiz Answers
1. Is the syntax correct for the following compound queries? If not, what would

correct the syntax? Use the EMPLOYEE_TBL and the EMPLOYEE_PAY_TBL shown
as follows:

EMPLOYEE_TBL

EMP_ID VARCHAR2(9) NOT NULL

LAST_NAME VARCHAR2(15) NOT NULL

FIRST_NAME VARCHAR2(15) NOT NULL

MIDDLE_NAME VARCHAR2(15)

ADDRESS VARCHAR2(30) NOT NULL

CITY VARCHAR2(15) NOT NULL

STATE CHAR(2) NOT NULL

ZIP NUMBER(5) NOT NULL

PHONE CHAR(10)

PAGER CHAR(10)

EMPLOYEE_PAY_TBL

EMP_ID VARCHAR2(9) NOT
NUL
L

PRIMARYKEY

POSITION VARCHAR2(15) NOT
NUL
L

DATE_HIRE DATE

PAY_RATE NUMBER(4,2) NOT
NUL
L

 - 251 -

DATE_LAST_RAISE DATE

SALARY NUMBER(8,2)

BONUS NUMBER(6,2)

a. SELECT EMP_ID, LAST_NAME, FIRST_NAME
b. FROM EMPLOYEE_TBL
c. UNION
d. SELECT EMP_ID, POSITION, DATE_HIRE
e. FROM EMPLOYEE_PAY_TBL

A. This compound query does not work because the data
types do not match. The EMP_ID columns match, but
the LAST_NAME and FIRST_NAME data types do not
match the POSITION and DATE_HIRE data types.

f. SELECT EMP_ID FROM EMPLOYEE_TBL
g. UNION ALL
h. SELECT EMP_ID FROM EMPLOYEE_PAY_TBL
i. ORDER BY EMP_ID

A. Yes, the statement is correct.
j. SELECT EMP_ID FROM EMPLOYEE_PAY_TBL
k. INTERSECT
l. SELECT EMP_ID FROM EMPLOYEE_TBL
m. ORDER BY 1

A. Yes, this compound query works.
2. Match the correct operator to the following statements:

STATEMENT OPERATOR

a. Show duplicates. A UNION ALL

b.Return only rows from the first query that match those in the second query. A INTERSECT

c. Return no duplicates. A UNION

d. Return only rows from the first query not returned by the second. A EXCEPT

Exercise Answers
1. Using the CUSTOMER_TBL and the ORDERS_TBL as listed:

CUSTOMER_TBL
CUST_IN VARCHAR2(10) NOT

NUL
L

PRIMARYKEY

CUST_NAME VARCHAR2(30) NOT
NUL
L

CUST_ADDRESS VARCHAR2(20) NOT
NUL
L

CUST_CITY VARCHAR2(15) NOT
NUL
L

CUST_STATE CHAR(2) NOT
NUL
L

CUST_ZIP NUMBER(5) NOT
NUL
L

CUST_PHONE NUMBER(10)
CUST_FAX NUMBER(10)
ORDERS_TBL

 - 252 -

ORD_NUM VARCHAR2(10) NOT
NUL
L

PRIMARYKEY

CUST_ID VARCHAR2(10) NOT
NUL
L

PROD_ID VARCHAR2(10) NOT
NUL
L

QTY NUMBER(6) NOT
NUL
L

ORD_DATE DATE
a. Write a compound query to find the customers who have placed an order.

A. SELECT CUST_ID FROM CUSTOMER_TBL
B. INTERSECT
C. SELECT CUST_ID FROM ORDERS_TBL;

b. Write a compound query to find the customers who have not placed an order.
A. SELECT CUST_ID FROM CUSTOMER_TBL
B. EXCEPT
C. SELECT CUST_ID FROM ORDERS_TBL;

Hour 16, "Using Indexes to Improve Performance"

Quiz Answers
1. What are some major disadvantages of using indexes?

A. Major disadvantages of an index include slowing batch jobs, storage
space on the disk, and maintenance upkeep on the index.

2. Why is the order of columns in a composite important?
A. Because query performance is improved by putting the column with

the most restrictive values first.
3. Should a column with a large percentage of NULLs be indexed?

A. No. A column with a large percentage of NULLs should not be
indexed, because the speed of accessing these rows degrades
when the value of a large percentage of rows is the same.

4. Is the main purpose of an index to stop duplicate values in a table?
A. No. The main purpose of an index is to enhance data retrieval

speed, although a unique index stops duplicate values in a table.
5. True or false: The main reason for a composite index is for aggregate function

usage in an index.
A. False. The main reason for composite indexes is for two or more

columns in the same table to be indexed.

Exercise Answers
1. Decide whether an index should be used in the following situations, and if so,

what type of index should be used.
a. Several columns, but a rather small table.

A. Being a very small table, no index needed.
b. Medium-sized table, no duplicates should be allowed.

A. A unique index could be used.
c. Several columns, very large table, several columns are used as

filters in the WHERE clause.
A. A composite index on the columns used as filter in the

WHERE clause should be the choice.
d. Large table, many columns, lots of data manipulation.

A. A choice of a single-column or composite index should
be considered, depending on filtering, ordering, and
grouping. For the large amount of data manipulation,

 - 253 -

the index could be dropped and re-created after the
INSERT, UPDATE, or DELETE jobs were done.

Hour 17, "Improving Database Performance"

Quiz Answers
1. Would the use of a unique index on a small table be of any benefit?

A. The index may not be of any use for performance issues; but, the
unique index would keep referential integrity intact. Referential
integrity is discussed in Hour 3, "Managing Database Objects."

2. What happens when the optimizer chooses not to use an index on a table when a
query has been executed?

A. A full table scan occurs.
3. Should the most restrictive clause(s) be evaluated before or after the join

condition(s) in the WHERE clause?
A. The most restrictive clause(s) should be evaluated before the join

condition(s) because join conditions normally return a large number
of rows.

Exercise Answers
1. Rewrite the following SQL statements to improve their performance. Use the

EMPLOYEE_TBL and the EMPLOYEE_PAY_TBL as described here:
EMPLOYEE_TBL
EMP_ID VARCHAR2(9) NOT

NUL
L

PRIMARYKEY

LAST_NAME VARCHAR2(15) NOT
NUL
L

FIRST_NAME VARCHAR2(15) NOT
NUL
L

MIDDLE_NAME VARCHAR2(15)
ADDRESS VARCHAR2(30) NOT

NUL
L

CITY VARCHAR2(15) NOT
NUL
L

STATE CHAR(2) NOT
NUL
L

ZIP NUMBER(5) NOT
NUL
L

PHONE CHAR(10)
PAGER CHAR(10)

EMPLOYEE_PAY_TBL
EMP_ID VARCHAR2(9) NOT

NUL
L

PRIMARYKEY

POSITION VARCHAR2(15) NOT
NUL
L

DATE_HIRE DATE
PAY_RATE NUMBER(4,2) NOT

 - 254 -

NUL
L

DATE_LAST_RAISE DATE
SALARY NUMBER(8,2)
BONUS NUMBER(8,2)

a. SELECT EMP_ID, LAST_NAME, FIRST_NAME,
b. PHONE
c. FROM EMPLOYEE_TBL
d. WHERE SUBSTR(PHONE, 1, 3) = '317' OR
e. SUBSTR(PHONE, 1, 3) = '812' OR
f. SUBSTR(PHONE, 1, 3) = '765';

A. SELECT EMP_ID, LAST_NAME, FIRST_NAME, PHONE
B. FROM EMPLOYEE_TBL
C. WHERE SUBSTR(PHONE, 1, 3) IN ('317', '812', '765');

g. SELECT LAST_NAME, FIRST_NAME
h. FROM EMPLOYEE_TBL
i. WHERE LAST_NAME LIKE '%ALL%;

A. SELECT LAST_NAME, FIRST_NAME
B. FROM EMPLOYEE_TBL
C. WHERE LAST_NAME LIKE 'WAL%;

j. SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME,
k. EP.SALARY
l. FROM EMPLOYEE_TBL E,
m. EMPLOYEE_PAY_TBL EP
n. WHERE LAST_NAME LIKE 'S%'
o. AND E.EMP_ID = EP.EMP_ID;

A. SELECT E.EMP_ID, E.LAST_NAME, E.FIRST_NAME,
B. EP.SALARY
C. FROM EMPLOYEE_PAY_TBL EP,
D. EMPLOYEE_TBL E
E. WHERE E.EMP_ID = EP.EMP_ID
F. AND LAST_NAME LIKE 'S';

Hour 18, "Managing Database Users"

Quiz Answers
1. What command is used to establish a session?

A. The CONNECT TO statement.
2. Which option must be used to drop a schema that still contains database objects?

A. The CASCADE option allows the schema to be dropped if there are
still objects under that schema.

3. What statement is used to remove a database privilege?
A. The REVOKE statement is used to remove database privileges.

4. What command creates a grouping or collection of tables, views, and privileges?
A. The CREATE SCHEMA statement.

Exercise Answers
1. Describe or list the steps that allow a new employee database access.

A. The immediate supervisor should instigate the request process by
completing a user ID request form, which contains all the information
necessary to add the user to the database. The form should then be
forwarded to the security officer. The user request is then routed to
either the database administrator or the individual designated to
assist the database administrator with security, so that the user can
be added to the database. This is a general process that should be
followed and modified accordingly for each company.

 - 255 -

Hour 19, "Managing Database Security"

Quiz Answers
1. What option must a user have to grant another user privileges to an object not

owned by the user?
A. The GRANT OPTION.

2. When privileges are granted to PUBLIC, do all users of the database acquire the
privileges, or just a listing of chosen users?

A. All users of the database will be granted the privileges.
3. What privilege is required to look at data in a specific table?

A. The SELECT privilege.
4. What type of privilege is the SELECT privilege?

A. An object-level privilege.

Exercise Answers
1. Write a statement to grant select access on a table called EMPLOYEE_TBL, which

you own, to a user ID, RPLEW. It should allow RPLEW to grant privileges to another
user on the same table.

A. GRANT SELECT ON EMPLOYEE_TBL TO RPLEW WITH
GRANT OPTION;

2. Write a statement that revokes the connect role from both of the users in Exercise
1.

A. REVOKE CONNECT ON EMPLOYEE_TBL FROM RPLEW;
3. Write a statement that allows RPLEW to select, insert, and update the

EMPLOYEE_TBL table.
A. GRANT SELECT, INSERT, UPDATE ON EMPLOYEE_TBL TO

RPLEW;

Hour 20, "Creating and Using Views and Synonyms"

Quiz Answers
1. Can a row of data be deleted from a view that was created from multiple tables?

A. No. The DELETE, INSERT, and UPDATE commands can only be
used on views created from a single table.

2. When creating a table, the owner is automatically granted the appropriate
privileges on that table. Is this true when creating a view?

A. Yes. The owner of a view is automatically granted the appropriate
privileges on the view.

3. What clause is used to order data when creating a view?
A. The GROUP BY clause functions in a view much as the ORDER BY

clause (or GROUP BY clause) does in a regular query.
4. What option can be used, when creating a view from a view, to check integrity

constraints?
A. The WITH CHECK OPTION.

5. You try to drop a view and receive an error because there are one or more
underlying views. What must you do to drop the view?

A. Re-execute your DROP statement with the CASCADE option. This
allows the DROP statement to succeed by also dropping all
underlying views.

Exercise Answers
1. Write a statement to create a view based on the total contents of the

EMPLOYEE_TBL table.
A. CREATE VIEW EMP_VIEW AS
B. SELECT * FROM EMPLOYEE_TBL;

2. Write a statement that creates a summarized view containing the average pay
rate and average salary for each city in the EMPLOYEE_TBL table.

 - 256 -

A. CREATE VIEW AVG_PAY_VIEW AS
B. SELECT E.CITY, AVG(P.PAY_RATE), AVG(P.SALARY)
C. FROM EMPLOYEE_PAY_TBL P,
D. EMPLOYEE_TBL E
E. WHERE P.EMP_ID = E.EMP_ID
F. GROUP BY E.CITY;

3. Write statements that drop the two views that you created in Exercises 1 and 2.
A. DROP VIEW EMP_VIEW
B. DROP VIEW AVG_PAY_VIEW;

Hour 21, "Working with the System Catalog"

Quiz Answers
1. The system catalog is also known as what?

A. The system catalog is also known as the data dictionary.
2. Can a regular user update the system catalog?

A. Not directly; however, when a user creates an object such as a table,
the System Catalog is automatically updated.

3. What Sybase system table would be used to retrieve information about views that
exist in the database?

A. SYSVIEWS
4. Who owns the system catalog?

A. The owner of the system catalog is often a privileged database user
account called SYS or SYSTEM. The system catalog can also be
owned by the owner of the database, but is not ordinarily owned by a
particular schema in the database.

5. What is the difference between the Oracle system objects ALL_TABLES and
DBA_TABLES?

A. ALL_TABLES shows all tables that are accessible by a particular
user, while DBA_TABLES shows all tables that exist in the database.

6. Who makes modifications to the system tables?
A. The database server itself.

Hour 22, "Advanced SQL Topics"

Quiz Answers
1. Can a trigger be altered?

A. No, the trigger must be replaced or re-created.
2. When a cursor is closed, can you reuse the name?

A. This is implementation-specific. In some implementations, the
closing of the cursor will allow you to reuse the name and even free
the memory, while for other implementations you must use the
DEALLOCATE statement before the name can be reused.

3. What command is used to retrieve the results after a Cursor has been opened?
A. The FETCH command.

4. Are triggers executed before or after an INSERT, DELETE, or UPDATE?
A. Triggers can be executed before or after an INSERT, DELETE, or

UPDATE. There are many different types of triggers that can be
created.

Exercise Answers
1. Using your implementation's system catalog tables, write the SQL that creates the

following SQL statements. Substitute the name of an actual object for the object
names.

a. GRANT SELECT ON TABLE_NAME TO USERNAME;
A. SELECT 'GRANT SELECT ON '||TABLE_NAME||

' TO '||
B. USERNAME||';'
C. FROM SYSTEM CATALOG TABLE_NAME;

 - 257 -

b. GRANT, CONNECT, RESOURCE TO USERNAME;
A. SELECT 'GRANT, CONNECT, RESOURCE TO '
B. ||USERNAME||';'
C. FROM SYSTEM CATALOG TABLE_NAME;

c. SELECT COUNT(*) FROM TABLE_NAME;
A. SELECT 'SELECT COUNT(*) FROM

'||TABLE_NAME||';'
B. FROM SYSTEM CATALOG TABLE_NAME;

2. Write a statement to create a stored procedure that deletes an entry from the
PRODUCTS_TBL table; it should be similar to the example used in this hour to
insert a new product.

A. CREATE PROCEDURE DELETE_PRODUCT
B. (OLD_PROD_ID IN VARCHAR2)
C. AS
D. BEGIN
E. DELETE FROM PRODUCTS_TBL
F. WHERE PROD_ID = OLD_PROD_ID;
G. COMMIT;
H. END;

I. /
3. Write a statement that executes the stored procedure that you created in Exercise

2 to delete the row for PROD_ID '9999'.
 . EXECUTE DELETE_PRODUCT ('9999');

Hour 23, "Extending SQL to the Enterprise, the Internet, and the
Intranet"

Quiz Answers
1. Can a database on a server be accessed from another server?

A. Yes; by using a middleware product. This is called accessing a
remote database.

2. What can a company use to disseminate information to its own employees?
A. An intranet.

3. Products that allow connections to databases are called what?
A. Middleware.

4. Can SQL be embedded into Internet programming languages?
A. Yes. SQL can be embedded in Internet programming languages,

such as Java.
5. How is a remote database accessed through a Web application?

A. Via a Web server.

Hour 24, "Extensions to Standard SQL

Quiz Answers
1. Is SQL a procedural or non-procedural language?

A. SQL is non-procedural, meaning that the database decides how to
execute the SQL statement. The extensions discussed during this
hour were procedural.

2. What are some of the reasons differences in SQL exist?
A. Differences exist in SQL among the vendors because of storage

requirements, advantages over competitors, ease of use, and
performance considerations.

3. What are the three basic operations of a cursor outside of declaring the cursor?
A. OPEN, FETCH, and CLOSE.

4. Procedural or non-procedural: With which does the database engine decide how
to evaluate and execute SQL statements?

A. Non-procedural.

 - 258 -

Exercise Answers
1. No specific answer.
2. Using the EMPLOYEE_TBL (see Appendix D), write an interactive SQL statement

that returns the name of all employees who have a ZIP code of 46234. (Hint:
Refer to the Oracle example in this hour for parameter passing.)

Name Null Type
EMP_ID NOT

NUL
L

VARCHAR2(9)

LAST_NAME NOT
NUL
L

VARCHAR2(8)

FIRST_NAME NOT
NUL
L

VARCHAR2(8)

MID_INIT CHAR(1)

ADDRESS NOT
NUL
L

VARCHAR2(15)

CITY NOT
NUL
L

VARCHAR2(12)

STATE NOT
NUL
L

CHAR(2)

ZIP NOT
NUL
L

CHAR(5)

PHONE CHAR(10)

PAGER CHAR(10)

A.
B. SELECT LAST_NAME, FIRST_NAME
C. FROM EMPLOYEE_TBL
D. WHERE ZIP = '&ZIP';
E.
F. Enter value for zip: 46234
G. old 3: WHERE ZIP = '&ZIP'
H. new 3: WHERE ZIP = '46234'
I.
J. Results of Query
K.
L.
M. LAST_NAM FIRST_NA
N. ———— ————
O. SPURGEON TIFFANY
P.
Q. 1 row selected.

3. Be sure to mention your knowledge of SQL in your resume, or in an interview.
Knowledge of SQL is usually a plus for many IT positions today. Also, try to
practice as much as possible, consistently, to extend your knowledge of SQL and
relational databases.

Appendix D: CREATE TABLE Statements for Book Examples

 - 259 -

Overview
This appendix is very useful. The CREATE TABLE statements used in the examples are listed. You can use
these statements to create your own tables to query.

EMPLOYEE_TBL
CREATE TABLE EMPLOYEE_TBL
{
EMP_ID VARCHAR2(9) NOT NULL,
LAST_NAME VARCHAR2(15) NOT NULL,
FIRST_NAME VARCHAR2(15) NOT NULL,
MIDDLE_NAME VARCHAR2(15),
ADDRESS VARCHAR2(30) NOT NULL,
CITY VARCHAR2(15) NOT NULL,
STATE CHAR(2) NOT NULL,
ZIP NUMBER(5) NOT NULL,
PHONE CHAR(10),
PAGER CHAR(10),
CONSTRAINT EMP_PK PRIMARY KEY (EMP_ID)
}
/

EMPLOYEE_PAY_TBL
CREATE TABLE EMPLOYEE_PAY_TBL
{
EMP_ID VARCHAR2(9) NOT NULL PRIMARYKEY,
POSITION VARCHAR2(15) NOT NULL,
DATE_HIRE DATE,
PAY_RATE NUMBER(4,2),
DATE_LAST_RAISE DATE,
SALARY NUMBER(8,2),
BONUS NUMBER(6,2),
CONSTRAINT EMP_FK FOREIGN KEY (EMP_ID) REFERENCES EMPLOYEE_TBL (EMP_ID)
}
/

CUSTOMER_TBL
CREATE TABLE CUSTOMER_TBL
}
CUST_ID VARCHAR2(10) NOT NULL PRIMARYKEY,
CUST_NAME VARCHAR2(30) NOT NULL,
CUST_ADDRESS VARCHAR2(20) NOT NULL,
CUST_CITY VARCHAR2(15) NOT NULL,
CUST_STATE CHAR(2) NOT NULL,
CUST_ZIP NUMBER(5) NOT NULL,
CUST_PHONE NUMBER(10),
CUST_FAX NUMBER(10),
}

 - 260 -

/

ORDERS_TBL
CREATE TABLE ORDERS_TBL
{
ORD_NUM VARCHAR2(10) NOT NULL PRIMARYKEY,
CUST_ID VARCHAR2(10) NOT NULL,
PROD_ID VARCHAR2(10) NOT NULL,
QTY NUMBER(6) NOT NULL,
ORD_DATE DATE,
}
/

PRODUCTS_TBL
CREATE TABLE PRODUCTS_TBL
}
PROD_ID VARCHAR2(10) NOT NULL PRIMARYKEY,
PROD_DESC VARCHAR2(40) NOT NULL,
COST NUMBER(6,2) NOT NULL,
}
/

Appendix E: INSERT Statements for Data in Book Examples
Overview

This appendix contains the INSERT statements that were used to populate the tables that are listed in
Appendix D, "CREATE TABLE Statements for Book Examples." These INSERT statements can be used to
populate the tables after you create them.

INSERT Statements
EMPLOYEE_TBL
INSERT INTO EMPLOYEE_TBL VALUES
('311549902', 'STEPHENS', 'TINA', 'DAWN', 'RR 3 BOX 17A', 'GREENWOOD',
'IN', '47890', '3178784465', NULL)
/
INSERT INTO EMPLOYEE_TBL VALUES
('442346889', 'PLEW', 'LINDA', 'CAROL', '3301 BEACON', 'INDIANAPOLIS',
'IN', '46224', '3172978990', NULL)
/
INSERT INTO EMPLOYEE_TBL VALUES
('213764555', 'GLASS', 'BRANDON', 'SCOTT', '1710 MAIN ST', 'WHITELAND',
'IN', '47885', '3178984321', '3175709980')
/
INSERT INTO EMPLOYEE_TBL VALUES
('313782439', 'GLASS', 'JACOB', NULL, '3789 WHITE RIVER BLVD',
'INDIANAPOLIS', 'IN', '45734', '3175457676', '8887345678')
/

 - 261 -

INSERT INTO EMPLOYEE_TBL VALUES
('220984332', 'WALLACE', 'MARIAH', NULL, '7889 KEYSTONE AVE',
'INDIANAPOLIS', 'IN', '46741', '3173325986', NULL)
/
INSERT INTO EMPLOYEE_TBL VALUES
('443679012', 'SPURGEON', 'TIFFANY', NULL, '5 GEORGE COURT',
'INDIANAPOLIS', 'IN', '46234', '3175679007', NULL)
/
EMPLOYEE_PAY_TBL
INSERT INTO EMPLOYEE_PAY_TBL VALUES
('311549902', 'MARKETING', '23-MAY-89', NULL, '01-MAY-99', '40000', NULL)
/
INSERT INTO EMPLOYEE_PAY_TBL VALUES
('442346889', 'TEAM LEADER', '17-JUN-90', '14.75', '01-JUN-99', NULL, NULL)
/
INSERT INTO EMPLOYEE_PAY_TBL VALUES
('213764555', 'SALES MANAGER', '14-AUG-94', NULL, '01-AUG-99', '30000', '2000')
/
INSERT INTO EMPLOYEE_PAY_TBL VALUES
('313782439', 'SALESMAN', '28-JUN-97', NULL, NULL, '20000', '1000')
/
INSERT INTO EMPLOYEE_PAY_TBL VALUES
('220984332', 'SHIPPER', '22-JUL-96', '11.00', '01-JUL-99', NULL, NULL)
/
INSERT INTO EMPLOYEE_PAY_TBL VALUES
('443679012', 'SHIPPER', '14-JAN-91', '15.00', '01-JAN-99', NULL, NULL)
/
CUSTOMER_TBL
INSERT INTO CUSTOMER_TBL VALUES
('232', 'LESLIE GLEASON', '798 HARDAWAY DR', 'INDIANAPOLIS',
'IN', '47856', '3175457690', NULL)
/
INSERT INTO CUSTOMER_TBL VALUES
('109', 'NANCY BUNKER', 'APT A 4556 WATERWAY', 'BROAD RIPPLE',
'IN', '47950', '3174262323', NULL)
/
INSERT INTO CUSTOMER_TBL VALUES
('345', 'ANGELA DOBKO', 'RR3 BOX 76', 'LEBANON', 'IN', '49967',
'7658970090', NULL)
/
INSERT INTO CUSTOMER_TBL VALUES
('090', 'WENDY WOLF', '3345 GATEWAY DR', 'INDIANAPOLIS', 'IN',
'46224', '3172913421', NULL)
/
INSERT INTO CUSTOMER_TBL VALUES

 - 262 -

('12', 'MARYS GIFT SHOP', '435 MAIN ST', 'DANVILLE', 'IL', '47978',
'3178567221', 3178523434')
/
INSERT INTO CUSTOMER_TBL VALUES
('432', 'SCOTTYS MARKET', 'RR2 BOX 173', 'BROWNSBURG', 'IN',
'45687', '3178529835', '3178529836')
/
INSERT INTO CUSTOMER_TBL VALUES
('333', 'JASONS AND DALLAS GOODIES', 'LAFAYETTE SQ MALL',
'INDIANAPOLIS', 'IN', '46222', '3172978886', '3172978887')
/
INSERT INTO CUSTOMER_TBL VALUES
('21', 'MORGANS CANDIES AND TREATS', '5657 W TENTH ST',
'INDIANAPOLIS', 'IN', '46234', 3172714398', NULL)
/
INSERT INTO CUSTOMER_TBL VALUES
('43', 'SCHYLERS NOVELTIES', '17 MAPLE ST', 'LEBANON', 'IN',
'48990', '3174346758', NULL)
/
INSERT INTO CUSTOMER_TBL VALUES
('287', 'GAVINS PLACE', '9880 ROCKVILLE RD', 'INDIANAPOLIS',
'IN', '46244', '3172719991', 3172719992')
/
INSERT INTO CUSTOMER_TBL VALUES
('288', 'HOLLYS GAMEARAMA', '567 US 31 SOUTH', 'WHITELAND',
'IN', '49980', '3178879023', NULL)
/
INSERT INTO CUSTOMER_TBL VALUES
('590', 'HEATHERS FEATHERS AND THINGS', '4090 N SHADELAND AVE',
'INDIANAPOLIS', 'IN', '43278', '3175456768', NULL)
/
INSERT INTO CUSTOMER_TBL VALUES
('610', 'RAGANS HOBBIES INC', '451 GREEN ST', 'PLAINFIELD', 'IN',
'46818', '3178393441', 3178399090')
/
INSERT INTO CUSTOMER_TBL VALUES
('560', 'ANDYS CANDIES', 'RR 1 BOX 34', 'NASHVILLE', 'IN',
'48756', '8123239871', NULL)
/
INSERT INTO CUSTOMER_TBL VALUES
('221', 'RYANS STUFF', '2337 S SHELBY ST', 'INDIANAPOLIS', 'IN',
'47834', '3175634402', NULL) .
/
ORDERS_TBL
INSERT INTO ORDERS_TBL VALUES

 - 263 -

('56A901', '232', '11235', '1', '22-OCT-99')
/
INSERT INTO ORDERS_TBL VALUES
('56A917', '12', '907', '100', '30-SEP-99')
/
INSERT INTO ORDERS_TBL VALUES
('32A132', '43', '222', '25', '10-OCT-99')
/
INSERT INTO ORDERS_TBL VALUES
('16C17', '090', '222', '2', '17-OCT-99')
/
INSERT INTO ORDERS_TBL VALUES
('18D778', '287', '90', '10', '17-OCT-99')
/
INSERT INTO ORDERS_TBL VALUES
('23E934', '432', '13', '20', '15-OCT-99')
/
PRODUCTS_TBL
INSERT INTO PRODUCTS_TBL VALUES
('11235', 'WITCHES COSTUME', '29.99')
/
INSERT INTO PRODUCTS_TBL VALUES
('222', 'PLASTIC PUMPKIN 18 INCH', '7.75')
/
INSERT INTO PRODUCTS_TBL VALUES
('13', 'FALSE PARAFFIN TEETH', '1.10')
/
INSERT INTO PRODUCTS_TBL VALUES
('90', 'LIGHTED LANTERNS', '14.50')
/
INSERT INTO PRODUCTS_TBL VALUES
('15', 'ASSORTED COSTUMES', '10.00')
/
INSERT INTO PRODUCTS_TBL VALUES
('9', 'CANDY CORN', '1.35')
/
INSERT INTO PRODUCTS_TBL VALUES
('6', 'PUMPKIN CANDY', '1.45')
/
INSERT INTO PRODUCTS_TBL VALUES
('87', 'PLASTIC SPIDERS', '1.05')
/
INSERT INTO PRODUCTS_TBL VALUES
('119', 'ASSORTED MASKS', '4.95')
/

 - 264 -

Appendix F: Glossary
<glossdiv><title>Glossary</title></glossdiv>

Glossary
alias

Another name or term for a table or column.
ANSI

American National Standards Institute.
application

A set of menus, forms, reports, and code that performs a business function using a database.
buffer

An area in memory for editing or execution of SQL.
Cartesian product

The result of not joining tables in the WHERE clause of an SQL statement. When tables in a query are
not joined, every row in one table is paired with every row in all other tables.

client
The client is typically a PC, but can be another server that is dependent on another computer for
data, services, or processing.

column
A part of a table that has a name and a specific data type.

COMMIT
Makes changes to data permanent.

composite index
An index that is composed of two or more columns.

condition
Search criteria in a query's WHERE clause that evaluates to TRUE or FALSE.

constant
A value that does not change.

constraint
Restrictions on data that are enforced at the data level.

cursor
A work area in memory where the current SQL statement is stored.

data dictionary
Another name for the System Catalog. See system catalog.

data type
Defines data as type, such as number, date, or character.

database
A collection of data.

DBA
Database Administrator. An individual who manages a database.

DDL
Data Definition Language.

default
A value used when no specification has been made.

distinct
Unique; used in the SELECT clause to return unique values.

DML
Data Manipulation Language.

domain
An object that is associated with a data type to which constraints may be attached; similar to a user-
defined type.

DQL
Data Query Language.

end user
Users whose jobs require them to query or manipulate data in the database. The end user is the
individual for which the database exists.

field
Another name for a column in a table. See column.

foreign key
One or more columns whose values are based on the primary key column values in another table.

 - 265 -

full table scan
The search of a table from a query without the use of an index.

function
An operation that is predefined and can be used in an SQL statement to manipulate data.

GUI
Graphical User Interface.

host
The computer on which a database is located.

index
Pointers to table data that make access to a table more efficient.

join
Combines data from different tables by linking columns. Used in the WHERE clause of an SQL
statement.

key
A column or columns that identify rows of a table.

normalization
Designing a database to reduce redundancy by breaking large tables down into smaller, more
manageable tables.

NULL value
A value that is unknown.

objects
Elements in a database, such as triggers, tables, views, and procedures.

operator
A reserved word or symbol used to perform an operation, such as addition or subtraction.

optimizer
Part of the database that decides how to execute an SQL statement and return an answer.

parameter
A value or range of values that is used to resolve a part of an SQL statement or program.

primary key
A specified table column that uniquely identifies rows of the table.

privilege
Specific permissions that are granted to users to perform a specific action in the database.

procedure
A set of instructions that are saved for repeated calling and execution.

public
A database user account that represents all database users.

query
An SQL statement that is used to retrieve data from a database.

record
See row.

referential integrity
Assures that values from one column depend on the values from another column.

relational database
A database that is organized into tables that consist of rows, which contain the same sets of
data items, where tables in the database are related to one another through common keys.

role
A database object that is associated with a group of system and/or object privileges, used to
simplify security management.

ROLLBACK
A command that undoes all transactions since the last COMMIT or SAVEPOINT command
issued.

row
Sets of records in a table.

savepoint
A specified point in a transaction to which you can roll back or undo changes.

schema
The owner of a set of objects in a database.

security
The process of ensuring that data in a database is fully protected at all times.

SQL
Structured Query Language.

stored procedure

 - 266 -

SQL code that is stored in a database and ready to execute.
subquery

A SELECT statement embedded within another SQL statement.
synonym

Another name given to a table or view.
syntax for SQL

A set of rules that shows mandatory and optional parts of an SQL statement's construction.
system catalog

Collection of tables or views that contain information about the database.
table

The basic logical storage unit for data in a relational database.

transaction
One or more SQL statements that are executed as a single unit.

trigger
A stored procedure that executes upon specified events in a database, such as before or after an
update of a table.

user-defined type
A data type that is defined by a user, which can be used to define table columns.

variable
A value that does not remain constant.

view
A database object that is created from one or more tables and can be used the same as a table. A
view is a virtual table that has no storage requirements of its own.

List of Figures
Hour 1: Welcome to the World of SQL

Figure 1.1: The database.
Figure 1.2: The relational database.
Figure 1.3: The client/server model.
Figure 1.4: Table relationships for this book.

Hour 3: Managing Database Objects
Figure 3.1: Schemas in a database.
Figure 3.2: The parent/child table relationship.

Hour 4: The Normalization Process
Figure 4.1: The raw database.
Figure 4.2: The first normal form.
Figure 4.3: The second normal form.
Figure 4.4: The third normal form.

Hour 6: Managing Database Transactions
Figure 6.1: Rollback area.

Hour 16: Using Indexes to Improve Performance
Figure 16.1: Table access using an index.
Figure 16.2: When to avoid using an index.

Hour 20: Creating and Using Views and Synonyms
Figure 20.1: The view.
Figure 20.2: View dependencies.

Hour 21: Working with the System Catalog
Figure 21.1: The system catalog.
Figure 21.2: Updates to the system catalog.

Hour 23: Extending SQL to the Enterprise, the Internet, and the Intranet
Figure 23.1: A database application.
Figure 23.2: Accessing a remote database.
Figure 23.3: A Web interface to a remote database.

List of Tables
Hour 21: Working with the System Catalog

TABLE 21.1: Major Implementations' System Catalog Objects

 - 267 -

